174
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

The Functional Mechanism of MicroRNA in Oral Lichen Planus

, , , , & ORCID Icon
Pages 4261-4274 | Published online: 26 Jul 2022

References

  • Eisen D, Carrozzo M, Bagan Sebastian JV, et al. Number V Oral lichen planus: clinical features and management. Oral Dis. 2005;11(6):338–349. doi:10.1111/j.1601-0825.2005.01142.x
  • Lodi G, Scully C, Carrozzo M, et al. Current controversies in oral lichen planus: report of an international consensus meeting. Part 1. Viral infections and etiopathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(1):40–51. doi:10.1016/j.tripleo.2004.06.077
  • Scully C, Beyli M, Ferreiro MC, et al. Update on oral lichen planus: etiopathogenesis and management. Crit Rev Oral Biol Med. 1998;9(1):86–122. doi:10.1177/10454411980090010501
  • Alrashdan MS, Cirillo N, McCullough M. Oral lichen planus: a literature review and update. Arch Dermatol Res. 2016;308(8):539–551.
  • Farhi D, Dupin N. Pathophysiology, etiologic factors, and clinical management of oral lichen planus, part I: facts and controversies. Clin Dermatol. 2010;28(1):100–108.
  • Scully C, Carrozzo M. Oral mucosal disease: lichen planus. Br J Oral Maxillofac Surg. 2008;46(1):15–21.
  • Chiang CP, Yu-Fong Chang J, Wang YP, et al. Oral lichen planus - Differential diagnoses, serum autoantibodies, hematinic deficiencies, and management. J Formos Med Assoc. 2018;117(9):756–765.
  • Warnakulasuriya S, Johnson NW, van der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 2007;36(10):575–580.
  • van der Waal I. Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol. 2009;45(4–5):317–323.
  • Chen J, Du G, Wang Y, et al. Integrative analysis of mRNA and miRNA expression profiles in oral lichen planus: preliminary results. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;124(4):390–402 e317. doi:10.1016/j.oooo.2017.05.513
  • Byeon B, Bilichak A, Kovalchuk I. Computational characterization of ncRNA fragments in various tissues of the brassica rapa plant. Noncoding RNA. 2017;3(2). doi:10.3390/ncrna3020017
  • Jochl C, Rederstorff M, Hertel J, et al. Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res. 2008;36(8):2677–2689. doi:10.1093/nar/gkn123
  • Heo MJ, Yun J, Kim SG. Role of non-coding RNAs in liver disease progression to hepatocellular carcinoma. Arch Pharm Res. 2019;42(1):48–62. doi:10.1007/s12272-018-01104-x
  • Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–1207. doi:10.1016/j.jaci.2017.08.034
  • Huang Z, Liu F, Wang W, et al. Deregulation of circ_003912 contributes to pathogenesis of erosive oral lichen planus by via sponging microRNA-123, −647 and −31 and upregulating FOXP3. Mol Med. 2021;27(1):132. doi:10.1186/s10020-021-00382-4
  • Ge X, Xie H, Wang L, et al. MicroRNA-122 promotes apoptosis of keratinocytes in oral lichen planus through suppressing VDR expression. J Cell Mol Med. 2021;25(7):3400–3407. doi:10.1111/jcmm.16418
  • Mehdipour M, Shahidi M, Manifar S, et al. Diagnostic and prognostic relevance of salivary microRNA-21, −125a, −31 and −200a levels in patients with oral lichen planus - a short report. Cell Oncol. 2018;41(3):329–334. doi:10.1007/s13402-018-0372-x
  • Daye M, Temiz SA, Isık B. The relationship between lichen planus and metabolic syndrome. J Cosmet Dermatol. 2021;20(8):2635–2639. doi:10.1111/jocd.13905
  • Tampa M, Caruntu C, Mitran M, et al. Markers of oral lichen planus malignant transformation. Dis Markers. 2018;2018:1959506. doi:10.1155/2018/1959506
  • Fiocco Z, Kupf S, Patzak L, et al. Quality of life and psychopathology in lichen planus: a neglected disease burden. Acta Derm Venereol. 2021;101(12):adv00619. doi:10.2340/actadv.v101.442
  • Sharda P, Mohta A, Ghiya BC, et al. Development of oral lichen planus after COVID-19 vaccination - a rare case report. J Eur Acad Dermatol Venereol. 2022;36(2):e82–e83. doi:10.1111/jdv.17718
  • Kurago ZB. Etiology and pathogenesis of oral lichen planus: an overview. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(1):72–80. doi:10.1016/j.oooo.2016.03.011
  • Roopashree MR, Gondhalekar RV, Shashikanth MC, et al. Pathogenesis of oral lichen planus - a review. J Oral Pathol Med. 2010;39(10):729–734. doi:10.1111/j.1600-0714.2010.00946.x
  • Nibali L, Fedele S, D’Aiuto F, et al. Interleukin-6 in oral diseases: a review. Oral Dis. 2012;18(3):236–243. doi:10.1111/j.1601-0825.2011.01867.x
  • Payeras MR, Cherubini K, Figueiredo MA, et al. Oral lichen planus: focus on etiopathogenesis. Arch Oral Biol. 2013;58(9):1057–1069. doi:10.1016/j.archoralbio.2013.04.004
  • Wang QM, Huang XY, Guan WQ. Expressions of Interleukin-27 in oral lichen planus, oral leukoplakia, and oral squamous cell carcinoma. Inflammation. 2022;45(3):1023–1038. doi:10.1007/s10753-021-01599-5
  • Wang ZM, Zhang J, Wang F, et al. The tipped balance of ILC1/ILC2 in peripheral blood of oral lichen planus is related to inflammatory cytokines. Front Cell Dev Biol. 2021;9:725169. doi:10.3389/fcell.2021.725169
  • Ma H, Wu Y, Yang H, et al. MicroRNAs in oral lichen planus and potential miRNA-mRNA pathogenesis with essential cytokines: a review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):164–173. doi:10.1016/j.oooo.2016.03.018
  • Otmani K, Lewalle P. Tumor suppressor miRNA in cancer cells and the tumor microenvironment: mechanism of deregulation and clinical implications. Front Oncol. 2021;11:708765. doi:10.3389/fonc.2021.708765
  • Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–5465. doi:10.1002/jcp.27486
  • Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610. doi:10.1038/nrg2843
  • Zhu H, Xiao X, Shi Y, et al. Inhibition of miRNA-29a regulates intestinal barrier function in diarrhea-predominant irritable bowel syndrome by upregulating ZO-1 and CLDN1. Exp Ther Med. 2020;20(6):155. doi:10.3892/etm.2020.9284
  • Wostenberg C, Quarles KA, Showalter SA. Dynamic origins of differential RNA binding function in two dsRBDs from the miRNA “microprocessor” complex. Biochemistry. 2010;49(50):10728–10736. doi:10.1021/bi1015716
  • Mishra S, Yadav T, Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol. 2016;98:12–23. doi:10.1016/j.critrevonc.2015.10.003
  • Mazumder S, Datta S, Ray JG, et al. Liquid biopsy: miRNA as a potential biomarker in oral cancer. Cancer Epidemiol. 2019;58:137–145. doi:10.1016/j.canep.2018.12.008
  • Sun Y, Kuek V, Liu Y, et al. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol. 2018;234(1):231–245. doi:10.1002/jcp.26856
  • Penna E, Orso F, Taverna D. miR-214 as a key hub that controls cancer networks: small player, multiple functions. J Invest Dermatol. 2015;135(4):960–969. doi:10.1038/jid.2014.479
  • Hrdlicka HC, Lee S-K, Delany AM. MicroRNAs are critical regulators of osteoclast differentiation. Curr Mol Biol Rep. 2019;5(1):65–74. doi:10.1007/s40610-019-0116-3
  • Stevens HC, Deng L, Grant JS, et al. Regulation and function of miR-214 in pulmonary arterial hypertension. Pulm Circ. 2016;6(1):109–117.
  • Zhao Y, Ponnusamy M, Zhang L, et al. The role of miR-214 in cardiovascular diseases. Eur J Pharmacol. 2017;816:138–145.
  • Avgeris M, Kokkinopoulou I, Maratou E, et al. Blood-based analysis of 84 microRNAs identifies molecules deregulated in individuals with type-2 diabetes, risk factors for the disease or metabolic syndrome. Diabetes Res Clin Pract. 2020;164:108187.
  • Cagle P, Niture S, Srivastava A, et al. MicroRNA-214 targets PTK6 to inhibit tumorigenic potential and increase drug sensitivity of prostate cancer cells. Sci Rep. 2019;9(1):9776.
  • Cao F, Zhan J, Chen X, et al. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/betacatenin signaling. Mol Med Rep. 2017;16(6):9301–9308.
  • Zhang H, Sun P, Wang YL, et al. MiR-214 promotes proliferation and inhibits apoptosis of oral cancer cells through MAPK/ERK signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(7):3710–3716.
  • Ai Y, Wu S, Zou C, et al. Circular RNA circFOXO3 regulates KDM2A by targeting miR-214 to promote tumor growth and metastasis in oral squamous cell carcinoma. J Cell Mol Med. 2021:26(6):1842–1852.
  • Wang X, Li H, Shi J. LncRNA HOXA11-AS promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by suppression of miR-214-3p expression. Biomed Res Int. 2019;2019:8645153.
  • Miletti-Gonzalez KE, Murphy K, Kumaran MN, et al. Identification of function for CD44 intracytoplasmic domain (CD44-ICD): modulation of matrix metalloproteinase 9 (MMP-9) transcription via novel promoter response element. J Biol Chem. 2012;287(23):18995–19007.
  • Zheng H, Li S. Reduced miRNA214 expression in oral mucosa contributes to the pathogenesis of oral lichen planus by targeting CD44. Mol Med Rep. 2018;17(1):1919–1925.
  • Nahand JS, Karimzadeh MR, Nezamnia M, et al. The role of miR-146a in viral infection. IUBMB Life. 2020;72(3):343–360.
  • Yang JG, Sun YR, Chen GY, et al. Different expression of MicroRNA-146a in peripheral blood CD4(+) T cells and lesions of oral lichen planus. Inflammation. 2016;39(2):860–866.
  • Mortazavi-Jahromi SS, Aslani M, Mirshafiey A. A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases. Immunol Lett. 2020;227:8–27.
  • Setién-Olarra A, Gainza-Cirauqui ML, Aguirre-Urizar JM, et al. The role of microRNAs in oral lichenoid disorders. Systematic review. Med Oral Patol Oral Cir Bucal. 2017;22(5):e548–e553.
  • Shomali N, Mansoori B, Mohammadi A, et al. MiR-146a functions as a small silent player in gastric cancer. Biomed Pharmacother. 2017;96:238–245.
  • Wang F, Ye LJ, Wang FJ, et al. miR-146a promotes proliferation, invasion, and epithelial-to-mesenchymal transition in oral squamous carcinoma cells. Environ Toxicol. 2020;35(10):1050–1057.
  • Zhu FY, Gan CW, Wang MX, et al. MiR-146a-5p inhibits proliferation and promotes apoptosis of oral squamous cell carcinoma cells by regulating NF-κB signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(7):3717–3723.
  • Shen Z, Gao X, Ma L, et al. Expression of Foxp3 and interleukin-17 in lichen planus lesions with emphasis on difference in oral and cutaneous variants. Arch Dermatol Res. 2014;306(5):441–446.
  • Wang J, Yang L, Wang L, et al. Forkhead box p3 controls progression of oral lichen planus by regulating microRNA-146a. J Cell Biochem. 2018;119(11):8862–8871.
  • Gao X, Zhou J, Wang J, et al. Mechanism of exosomal miR-155 derived from bone marrow mesenchymal stem cells on stemness maintenance and drug resistance in myeloma cells. J Orthop Surg Res. 2021;16(1):637.
  • Hefzy EM, Hassuna NA, Shaker OG, et al. miR-155 T/A (rs767649) and miR-146a A/G (rs57095329) single nucleotide polymorphisms as risk factors for chronic hepatitis B virus infection among Egyptian patients. PLoS One. 2021;16(8):e0256724.
  • Bayraktar R, Van Roosbroeck K. miR-155 in cancer drug resistance and as target for miRNA-based therapeutics. Cancer Metastasis Rev. 2018;37(1):33–44.
  • Emami N, Mohamadnia A, Mirzaei M, et al. miR-155, miR-191, and miR-494 as diagnostic biomarkers for oral squamous cell carcinoma and the effects of Avastin on these biomarkers. J Korean Assoc Oral Maxillofac Surg. 2020;46(5):341–347.
  • Liu Y, Wan X, Yuan Y, et al. Opposite effects of miR-155 in the initial and later stages of lipopolysaccharide (LPS)-induced inflammatory response. J Zhejiang Univ Sci B. 2021;22(7):590–598.
  • Tao Y, Ai R, Hao Y, et al. Role of miR-155 in immune regulation and its relevance in oral lichen planus. Exp Ther Med. 2019;17(1):575–586.
  • Cerda A, Amaral AA, de Oliveira R, et al. Peripheral blood miRome identified miR-155 as potential biomarker of MetS and cardiometabolic risk in obese patients. Int J Mol Sci. 2021;22(3):1468.
  • Chou MY, Fang CY, Hsieh PL, et al. Depletion of miR-155 hinders the myofibroblast activities and reactive oxygen species generation in oral submucous fibrosis. J Formos Med Assoc. 2022;121(2):467–472.
  • Li X, Liu K, Zhou W, et al. MiR-155 targeting FoxO3a regulates oral cancer cell proliferation, apoptosis, and DDP resistance through targeting FoxO3a. Cancer Biomark. 2020;27(1):105–111.
  • Liang XY, Hu JY, Zhou G. [Detection of miR-155, miR-146a in PBNCs and tissues from patients with oral lichen planus]. Shanghai Kou Qiang Yi Xue. 2015;24(6):729–734. Chinese.
  • Schroder K, Hertzog PJ, Ravasi T, et al. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75(2):163–189.
  • Ilia S, Goulielmos GN, Samonis G, et al. Polymorphisms in IL-6, IL-10, TNF-alpha, IFN-gamma and TGF-beta1 genes and susceptibility to acute otitis media in early infancy. Pediatr Infect Dis J. 2014;33(5):518–521.
  • Gein SV, Sharavieva IL. Effect of rotation and immobilization stress on IL-1beta, IL-2, IL-4, and IFN-gamma production by splenocytes under opiate receptor blockade in vivo. Dokl Biol Sci. 2014;454:69–71.
  • Hu JY, Zhang J, Ma JZ, et al. MicroRNA-155-IFN-gamma Feedback Loop in CD4(+)T Cells of Erosive type Oral Lichen Planus. Sci Rep. 2015;5:16935.
  • Wang L, Wu W, Chen J, et al. MicroRNA microarray-based identification of involvement of miR-155 and miR-19a in development of Oral Lichen Planus (OLP) by modulating Th1/Th2 balance via targeting eNOS and Toll-Like Receptor 2 (TLR2). Med Sci Monit. 2018;24:3591–3603.
  • Lan X, Li G, Liu H, et al. MiR-27a/b regulates liver regeneration by posttranscriptional modification of Tmub1. Dig Dis Sci. 2018;63(9):2362–2372.
  • Lee JJ, Drakaki A, Iliopoulos D, et al. MiR-27b targets PPARgamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene. 2012;31(33):3818–3825.
  • Lozano-Velasco E, Contreras A, Crist C, et al. Pitx2c modulates Pax3+/Pax7+ cell populations and regulates Pax3 expression by repressing miR27 expression during myogenesis. Dev Biol. 2011;357(1):165–178.
  • Rameshwar P, Chen K-D, Goto S, et al. Identification of miR-27b as a novel signature from the mRNA profiles of adipose-derived mesenchymal stem cells involved in the tolerogenic response. PLoS One. 2013;8(4):e60492.
  • Kang T, Lu W, Xu W, et al. MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem. 2013;288(48):34394–34402.
  • Ding L, Ni J, Yang F, et al. Promising therapeutic role of miR-27b in tumor. Tumour Biol. 2017;39(3):1010428317691657.
  • Wu H, Pula T, Tews D, et al. microRNA-27a-3p but Not −5p Is a crucial mediator of human adipogenesis. Cells. 2021;10(11):3205.
  • Li C, Lin XF, Wang JN, et al. FBXW7 inhibited cell proliferation and invasion regulated by miR-27a through PI3K/AKT signaling pathway and epithelial-to-mesenchymal transition in oral squamous cell carcinoma. Eur Rev Med Pharmacol Sci. 2020;24(7):3701–3709.
  • Li T, Wu Q, Liu D, et al. miR-27b suppresses tongue squamous cell carcinoma epithelial-mesenchymal transition by targeting ITGA5. Onco Targets Ther. 2020;13:11855–11867.
  • Ge X, Yuan L, Wei J, et al. Vitamin D/VDR signaling induces miR-27a/b expression in oral lichen planus. Sci Rep. 2020;10(1):301.
  • Stasio DD, Mosca L, Lucchese A, et al. Salivary mir-27b expression in oral lichen planus patients: a series of cases and a narrative review of literature. Curr Top Med Chem. 2019;19(31):2816–2823.
  • Cozza G, Salvi M. The acidophilic kinases PLK2 and PLK3: structure, substrate targeting and inhibition. Curr Protein Pept Sci. 2018;19(8):728–745.
  • Chen J, Du G, Chang Y, et al. Downregulated miR-27b promotes keratinocyte proliferation by targeting PLK2 in oral lichen planus. J Oral Pathol Med. 2019;48(4):326–334.
  • Chen J, Wang Y, Du G, et al. Down-regulation of miRNA-27b-3p suppresses keratinocytes apoptosis in oral lichen planus. J Cell Mol Med. 2019;23(6):4326–4337.
  • Aghbari SM, Zayed SO, Shaker OG, et al. Evaluating the role of tissue microRNA-27b as a diagnostic marker for oral lichen planus and possible correlation with CD8. J Oral Pathol Med. 2019;48(1):68–73.
  • Li C, Li Y, Lu Y, et al. miR-26 family and its target genes in tumorigenesis and development. Crit Rev Oncol Hematol. 2021;157:103124.
  • Kim H, Huang W, Jiang X, et al. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci U S A. 2010;107(5):2183–2188.
  • Arora H, Qureshi R, Park AK, et al. Coordinated regulation of ATF2 by miR-26b in gamma-irradiated lung cancer cells. PLoS One. 2011;6(8):e23802.
  • Acharya A, Berry DC, Zhang H, et al. miR-26 suppresses adipocyte progenitor differentiation and fat production by targeting Fbxl19. Genes Dev. 2019;33(19–20):1367–1380.
  • Dill H, Linder B, Fehr A, et al. Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2. Genes Dev. 2012;26(1):25–30.
  • Dey BK, Gagan J, Yan Z, et al. miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev. 2012;26(19):2180–2191.
  • Icli B, Wara AK, Moslehi J, et al. MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res. 2013;113(11):1231–1241.
  • Fu X, Dong B, Tian Y, et al. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J Clin Invest. 2015;125(6):2497–2509.
  • Wei Z, Chang K, Fan C, et al. MiR-26a/miR-26b represses tongue squamous cell carcinoma progression by targeting PAK1. Cancer Cell Int. 2020;20:82.
  • Danielsson K, Ebrahimi M, Wahlin YB, et al. Increased levels of COX-2 in oral lichen planus supports an autoimmune cause of the disease. J Eur Acad Dermatol Venereol. 2012;26(11):1415–1419.
  • Chen CY, Chang JT, Ho YF, et al. MiR-26 down-regulates TNF-alpha/NF-kappaB signalling and IL-6 expression by silencing HMGA1 and MALT1. Nucleic Acids Res. 2016;44(8):3772–3787.
  • Du J, Gao R, Wang Y, et al. MicroRNA-26a/b have protective roles in oral lichen planus. Cell Death Dis. 2020;11(1):15.
  • Ghallab NA, Kasem RF, El-Ghani SFA, et al. Gene expression of miRNA-138 and cyclin D1 in oral lichen planus. Clin Oral Investig. 2017;21(8):2481–2491. doi:10.1007/s00784-017-2091-5
  • Wang J, Hu M, Li L. Clinical values of miR-23a-3p in oral lichen planus and its role in keratinocyte proliferation and inflammatory response. J Inflamm Res. 2021;14:5013–5021. doi:10.2147/JIR.S325986
  • Aghbari SMH, Abushouk AI, Shakir OG, et al. Correlation between tissue expression of microRNA-137 and CD8 in oral lichen planus. Clin Oral Investig. 2018;22(3):1463–1467. doi:10.1007/s00784-017-2252-6
  • Zhang J, Chen GY, Wang F, et al. MiR-29b interacts with IFN-gamma and induces DNA hypomethylation in CD4(+) T cells of oral lichen planus. Int J Biol Macromol. 2020;147:1248–1254. doi:10.1016/j.ijbiomac.2019.09.252
  • Shang M, Sun J. Vitamin D/VDR, probiotics, and gastrointestinal diseases. Curr Med Chem. 2017;24(9):876–887. doi:10.2174/0929867323666161202150008
  • Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29(6):726–776. doi:10.1210/er.2008-0004
  • Palazon A, Goldrath AW, Nizet V, et al. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41(4):518–528. doi:10.1016/j.immuni.2014.09.008
  • Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167(2):457–470 e413. doi:10.1016/j.cell.2016.08.064
  • Fan D, Coughlin LA, Neubauer MM, et al. Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 2015;21(7):808–814. doi:10.1038/nm.3871
  • Corcoran SE, O’Neill LA. HIF1alpha and metabolic reprogramming in inflammation. J Clin Invest. 2016;126(10):3699–3707. doi:10.1172/JCI84431
  • Lee JH, Elly C, Park Y, et al. E3 ubiquitin ligase VHL regulates hypoxia-inducible Factor-1alpha to maintain regulatory T cell stability and suppressive capacity. Immunity. 2015;42(6):1062–1074. doi:10.1016/j.immuni.2015.05.016
  • Ge X, Wang L, Li M, et al. Vitamin D/VDR signaling inhibits LPS-induced IFNgamma and IL-1beta in Oral epithelia by regulating hypoxia-inducible factor-1alpha signaling pathway. Cell Commun Signal. 2019;17(1):18. doi:10.1186/s12964-019-0331-9
  • Zhao B, Xu N, Li R, et al. Vitamin D/VDR signaling suppresses microRNA-802-induced apoptosis of keratinocytes in oral lichen planus. FASEB J. 2019;33(1):1042–1050. doi:10.1096/fj.201801020RRR
  • Dolcet X, Llobet D, Pallares J, et al. NF-kB in development and progression of human cancer. Virchows Arch. 2005;446(5):475–482. doi:10.1007/s00428-005-1264-9
  • Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. doi:10.1101/cshperspect.a001651
  • Sun SC. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545–558. doi:10.1038/nri.2017.52
  • Deng S, Xu Y, Wang X, et al. Study on the role of salivary flora and NF-kappaB inflammatory signal pathway in oral lichen planus. Inflammation. 2020;43(3):994–1008. doi:10.1007/s10753-020-01185-1
  • Rusanen P, Marttila E, Uittamo J, et al. TLR1-10, NF-kappaB and p53 expression is increased in oral lichenoid disease. PLoS One. 2017;12(7):e0181361. doi:10.1371/journal.pone.0181361
  • Wang J, Zhai X, Guo J, et al. Long non-coding RNA DQ786243 modulates the induction and function of CD4(+) Treg cells through Foxp3-miR-146a-NF-kappaB axis: implications for alleviating oral lichen planus. Int Immunopharmacol. 2019;75:105761. doi:10.1016/j.intimp.2019.105761
  • Wang Y, Zhang H, Du G, et al. Total glucosides of paeony (TGP) inhibits the production of inflammatory cytokines in oral lichen planus by suppressing the NF-κB signaling pathway. Int Immunopharmacol. 2016;36:67–72. doi:10.1016/j.intimp.2016.04.010
  • Zhao Z, Han Y, Zhang Z, et al. Total glucosides of paeony improves the immunomodulatory capacity of MSCs partially via the miR-124/STAT3 pathway in oral lichen planus. Biomed Pharmacother. 2018;105:151–158. doi:10.1016/j.biopha.2018.05.076
  • Ersahin T, Tuncbag N, Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway. Mol Biosyst. 2015;11(7):1946–1954. doi:10.1039/C5MB00101C
  • Aoki M, Fujishita T. Oncogenic roles of the PI3K/AKT/mTOR Axis. Curr Top Microbiol Immunol. 2017;407:153–189. doi:10.1007/82_2017_6
  • Smith TJ. Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol Rev. 2010;62(2):199–236. doi:10.1124/pr.109.002469
  • Tan YQ, Zhang J, Du GF, et al. Altered autophagy-associated genes expression in T cells of oral lichen planus correlated with clinical features. Mediators Inflamm. 2016;2016:4867368. doi:10.1155/2016/4867368
  • Zhang N, Zhang J, Tan Y-Q, et al. Activated Akt/mTOR-autophagy in local T cells of oral lichen planus. Int Immunopharmacol. 2017;48:84–90. doi:10.1016/j.intimp.2017.04.016
  • Ma RJ, Tan YQ, Zhou G. Aberrant IGF1-PI3K/AKT/MTOR signaling pathway regulates the local immunity of oral lichen planus. Immunobiology. 2019;224(3):455–461. doi:10.1016/j.imbio.2019.01.004
  • Wang J, Luo H, Xiao Y, et al. miR-125b inhibits keratinocyte proliferation and promotes keratinocyte apoptosis in oral lichen planus by targeting MMP-2 expression through PI3K/Akt/mTOR pathway. Biomed Pharmacother. 2016;80:373–380. doi:10.1016/j.biopha.2016.02.043
  • Wang LWW, Chen J, Li Y, Xu M, Cai Y, Cai Y. miR‑122 and miR‑199 synergistically promote autophagy in oral lichen planus by targeting the Akt/mTOR pathway. Int J Mol Med. 2019;43(3):1373–1381. doi:10.3892/ijmm.2019.4068
  • Peng Q, Zhang J, Zhou G. Differentially circulating exosomal microRNAs expression profiling in oral lichen planus. Am J Transl Res. 2018;10(9):2848–2858.
  • Al-Hashimi I, Schifter M, Lockhart PB, et al. Oral lichen planus and oral lichenoid lesions: diagnostic and therapeutic considerations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(S25):e21–12. doi:10.1016/j.tripleo.2006.11.001
  • Nosratzehi T. Oral lichen planus: an overview of potential risk factors, biomarkers and treatments. Asian Pac J Cancer Prev. 2018;19(5):1161–1167. doi:10.22034/APJCP.2018.19.5.1161
  • Bindakhil M, Akintoye S, Corby P, et al. Influence of topical corticosteroids on malignant transformation of oral lichen planus. J Oral Pathol Med. 2022;51(2):188–193. doi:10.1111/jop.13257
  • Sole C, Larrea E, Di Pinto G, et al. miRNAs in B-cell lymphoma: molecular mechanisms and biomarker potential. Cancer Lett. 2017;405:79–89. doi:10.1016/j.canlet.2017.07.020
  • Wang H, Jiang Y, Peng H, et al. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev. 2015;81:142–160. doi:10.1016/j.addr.2014.10.031
  • Sinon SH, Rich AM, Parachuru VPB, et al. Downregulation of toll-like receptor-mediated signalling pathways in oral lichen planus. J Oral Pathol Med. 2016;45(1):28–34. doi:10.1111/jop.12319
  • Li C, He H, Wang J, et al. Possible roles of exosomal miRNAs in the pathogenesis of oral lichen planus. Am J Transl Res. 2019;11(9):5313–5323.
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–222. doi:10.1038/nrd.2016.246