75
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Biomarker Changes and Molecular Signatures Associated with Takayasu Arteritis Following Treatment with Glucocorticoids and Tofacitinib

, , , , , , , , , & show all
Pages 4395-4407 | Published online: 03 Aug 2022

References

  • Russo RAG, Katsicas MM. Takayasu arteritis. Front Pediatr. 2018;6(265). doi:10.3389/fped.2018.00265
  • Tombetti E, Mason JC. Takayasu arteritis: advanced understanding is leading to new horizons. Rheumatology. 2019;58:206–219. doi:10.1093/rheumatology/key040
  • Dagna L, Salvo F, Tiraboschi M, et al. Pentraxin-3 as a marker of disease activity in Takayasu arteritis. Ann Intern Med. 2011;155(7):425–433. doi:10.7326/0003-4819-155-7-201110040-00005
  • Goel R, Kabeerdoss J, Ram B, et al. Serum cytokine profile in Asian Indian patients with Takayasu arteritis and its association with disease activity. Open Rheumatol J. 2017;11:23–29. doi:10.2174/1874312901711010023
  • Sun Y, Kong X, Wu S, et al. YKL-40 as a new biomarker of disease activity in Takayasu arteritis. Int J Cardiol. 2019;293:231–237. doi:10.1016/j.ijcard.2019.06.058
  • Saadoun D, Garrido M, Comarmond C, et al. Th1 and Th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheumatol. 2015;67(5):1353–1360. doi:10.1002/art.39037
  • Matsuyama A, Sakai N, Ishigami M, et al. Matrix metalloproteinases as novel disease markers in Takayasu arteritis. Circulation. 2003;108(12):1469–1473. doi:10.1161/01.CIR.0000090689.69973.B1
  • Noris M, Daina E, Gamba S, Bonazzola S, Remuzzi G. Interleukin-6 and RANTES in Takayasu arteritis: a guide for therapeutic decisions. Circulation. 1999;100(1):55–60. doi:10.1161/01.CIR.100.1.55
  • Dong H, Zhang Y, Zou Y, et al. Elevated chemokines concentration is associated with disease activity in Takayasu arteritis. Cytokine. 2021;143:155515. doi:10.1016/j.cyto.2021.155515
  • Kong X, Wu S, Dai X, et al. A comprehensive profile of chemokines in the peripheral blood and vascular tissue of patients with Takayasu arteritis. Arthritis Res Ther. 2022;24(1):49. doi:10.1186/s13075-022-02740-x
  • Pulsatelli L, Boiardi L, Assirelli E, et al. Imbalance between angiogenic and anti-angiogenic factors in sera from patients with large-vessel vasculitis. Clin Exp Rheumatol. 2020;38(2):23–30.
  • Barra L, Yang G, Pagnoux C; Canadian Vasculitis Network (CanVasc). Non-glucocorticoid drugs for the treatment of Takayasu’s arteritis: a systematic review and meta-analysis. Autoimmun Rev. 2018;17(7):683–693. doi:10.1016/j.autrev.2018.01.019
  • Jamilloux Y, El Jammal T, Vuitton L, et al. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2019;18:102390. doi:10.1016/j.autrev.2019.102390
  • Kong X, Sun Y, Ma L, et al. The critical role of IL-6 in the pathogenesis of Takayasu arteritis. Clin Exp Rheumatol. 2016;34(3 Suppl 97):S21–S27.
  • Li J, Li M, Tian X, Zeng X. Tofacitinib in patients with refractory Takayasu’s arteritis. Rheumatology. 2020;59(11):e95–e98. doi:10.1093/rheumatology/keaa281
  • Kong X, Sun Y, Dai X, et al. Treatment efficacy and safety of tofacitinib versus methotrexate in Takayasu arteritis: a prospective observational study. Ann Rheum Dis. 2022;81(1):117–123. doi:10.1136/annrheumdis-2021-220832
  • Régnier P, Le Joncour A, Maciejewski-Duval A, et al. Targeting JAK/STAT pathway in Takayasu’s arteritis. Ann Rheum Dis. 2020;79:951–959. doi:10.1136/annrheumdis-2019-216900
  • Arend WP, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum. 1990;33:1129–1134. doi:10.1002/art.1780330811
  • Kerr GS, Hallahan CW, Giordano J, et al. Takayasu arteritis. Ann Intern Med. 1994;120(11):919–929. doi:10.7326/0003-4819-120-11-199406010-00004
  • Ramirez GA, Rovere-Querini P, Blasi M, et al. PTX3 intercepts vascular inflammation in systemic immune-mediated diseases. Front Immunol. 2019;10:1135. doi:10.3389/fimmu.2019.01135
  • Wen X, Hou R, Xu K, et al. Pentraxin 3 is more accurate than C-reactive protein for Takayasu arteritis activity assessment: a systematic review and meta-analysis. PLoS One. 2021;16(2):e0245612. doi:10.1371/journal.pone.0245612
  • Choy EH, De Benedetti F, Takeuchi T, et al. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol. 2020;16(6):335–345. doi:10.1038/s41584-020-0419-z
  • Park MC, Lee SW, Park YB, et al. Serum cytokine profiles and their correlations with disease activity in Takayasu’s arteritis. Rheumatology. 2006;45:545–548. doi:10.1093/rheumatology/kei266
  • Arraes AE, de Souza AW, Mariz HA, et al. (18) F-Fluorodeoxyglucose positron emission tomography and serum cytokines and matrix metalloproteinases in the assessment of disease activity in Takayasu’s arteritis. Rev Bras Reumatol Engl Ed. 2016;56(4):299–308. doi:10.1016/j.rbr.2015.03.009
  • Kong X, Ma L, Ji Z, et al. Pro-fibrotic effect of IL-6 via aortic adventitial fibroblasts indicates IL-6 as a treatment target in Takayasu arteritis. Clin Exp Rheumatol. 2018;36(1):62–72.
  • Nishino Y, Tamai M, Kawakami A, et al. Serum levels of BAFF for assessing the disease activity of Takayasu arteritis. Clin Exp Rheumatol. 2010;28(1 Suppl 57):14–17.
  • Gao Q, Lv N, Dang A, et al. Association of interleukin-6 and interleukin-10 expression, gene polymorphisms, and Takayasu arteritis in a Chinese Han population. Clin Rheumatol. 2019;38(1):143–148. doi:10.1007/s10067-018-4260-6
  • Dhawan V, Mahajan N, Jain S. Role of C-C chemokines in Takayasu’s arteritis disease. Int J Cardiol. 2006;112(1):105–111. doi:10.1016/j.ijcard.2005.11.101
  • Kimura S, Nanbu U, Noguchi H, et al. Macrophage CCL22 expression in the tumor microenvironment and implications for survival in patients with squamous cell carcinoma of the tongue. J Oral Pathol Med. 2019;48(8):677–685. doi:10.1111/jop.12885
  • Buskermolen JK, Roffel S, Gibbs S. Stimulation of oral fibroblast chemokine receptors identifies CCR3 and CCR4 as potential wound healing targets. J Cell Physiol. 2017;232:2996–3005. doi:10.1002/jcp.25946
  • Cui X, Kong X, Chen R, et al. The potential role of leflunomide in inhibiting vascular fibrosis by down-regulating type-II macrophages in Takayasu’s arteritis. Clin Exp Rheumatol. 2020;38(2):69–78.
  • Inoue T, Fujishima S, Ikeda E, et al. CCL22 and CCL17 in rat radiation pneumonitis and in human idiopathic pulmonary fibrosis. Eur Respir J. 2004;24(1):49–56. doi:10.1183/09031936.04.00110203
  • Larsson A, Sköldenberg E, Ericson H. Serum and plasma levels of FGF-2 and VEGF in healthy blood donors. Angiogenesis. 2002;5(1–2):107–110. doi:10.1023/A:1021588227705
  • Laddha AP, Kulkarni YA. VEGF and FGF-2: promising targets for the treatment of respiratory disorders. Respir Med. 2019;156:33–46. doi:10.1016/j.rmed.2019.08.003
  • Fukui S, Kuwahara-Takaki A, Ono N, et al. Serum levels of fibroblast growth factor-2 distinguish Takayasu arteritis from giant cell arteritis independent of age at diagnosis. Sci Rep. 2019;9(1):688. doi:10.1038/s41598-018-36825-y
  • Wu G, Mahajan N, Dhawan V. Acknowledged signatures of matrix metalloproteinases in Takayasu’s arteritis. Biomed Res Int. 2014;2014:827105. doi:10.1155/2014/827105
  • Mahajan N, Dhawan V, Mahmood S, Malik S, Jain S. Extracellular matrix remodeling in Takayasu’s arteritis: role of matrix metalloproteinases and adventitial inflammation. Arch Med Res. 2012;43(5):406–410. doi:10.1016/j.arcmed.2012.07.007
  • Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006;11:529–543. doi:10.2741/1817
  • Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol. 2013;48(3):222–272. doi:10.3109/10409238.2013.770819
  • Montero P, Milara J, Roger I, Cortijo J. Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms. Int J Mol Sci. 2021;22(12):6211. doi:10.3390/ijms22126211
  • Chen Y, Surinkaew S, Naud P, et al. JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate. Cardiovasc Res. 2017;113(3):310–320. doi:10.1093/cvr/cvx004
  • Rosengren S, Corr M, Firestein GS, Boyle DL. The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann Rheum Dis. 2012;71(3):440–447. doi:10.1136/ard.2011.150284