109
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Vitamin D Ameliorates Apoptosis and Inflammation by Targeting the Mitochondrial and MEK1/2-ERK1/2 Pathways in Hyperoxia-Induced Bronchopulmonary Dysplasia

, , , , , & show all
Pages 4891-4906 | Published online: 25 Aug 2022

References

  • Thébaud B, Goss KN, Laughon M, et al. Bronchopulmonary dysplasia. Nat Rev Dis Primers. 2019;5(1):78. doi:10.1038/s41572-019-0127-7
  • Liu ZQ, Li XX, Qiu SQ, et al.Vitamin D contributes to mast cell stabilization. Allergy. 2017;72(8):1184–1192.
  • Corachán A, Ferrero H, Aguilar A, et al. Inhibition of tumor cell proliferation in human uterine leiomyomas by vitamin D via Wnt/β-catenin pathway. Fertil Steril. 2019;111(2):397–407. doi:10.1016/j.fertnstert.2018.10.008
  • Schardey J, Globig A-M, Janssen C, et al. Vitamin D inhibits pro-inflammatory T cell function in patients with inflammatory bowel disease. J Crohns Colitis. 2019;13(12):1546–1557. doi:10.1093/ecco-jcc/jjz090
  • Tzilas V, Bouros E, Barbayianni I, et al. Vitamin D prevents experimental lung fibrosis and predicts survival in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2019;55:17–24. doi:10.1016/j.pupt.2019.01.003
  • Mao X, Qiu J, Zhao L, et al. Vitamin D and IL-10 deficiency in preterm neonates with bronchopulmonary dysplasia. Front Pediatr. 2018;6:246. doi:10.3389/fped.2018.00246
  • Chen C, Weng H, Zhang X, et al. Low-dose vitamin D protects hyperoxia-induced bronchopulmonary dysplasia by inhibiting neutrophil extracellular traps. Front Pediatr. 2020;8:335. doi:10.3389/fped.2020.00335
  • Zhen H, Hu H, Rong G, Huang X, Tan C, Yu X. VitA or VitD ameliorates bronchopulmonary dysplasia by regulating the balance between M1 and M2 macrophages. Biomed Pharmacother. 2021;141:111836. doi:10.1016/j.biopha.2021.111836
  • Kose M, Bastug O, Sonmez MF, et al. Protective effect of vitamin D against hyperoxia-induced lung injury in newborn rats. Pediatr Pulmonol. 2017;52(1):69–76. doi:10.1002/ppul.23500
  • Yao L, Shi Y, Zhao X, et al. Vitamin D attenuates hyperoxia-induced lung injury through downregulation of Toll-like receptor 4. Int J Mol Med. 2017;39(6):1403–1408. doi:10.3892/ijmm.2017.2961
  • Song J, Liu W, Wang J, et al. GALNT6 promotes invasion and metastasis of human lung adenocarcinoma cells through O-glycosylating chaperone protein GRP78. Cell Death Dis. 2020;11(5):352. doi:10.1038/s41419-020-2537-6
  • Stivala S, Codilupi T, Brkic S, et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest. 2019;129(4):1596–1611. doi:10.1172/JCI98785
  • Yamakawa K, Yokohira M, Nakano Y, Kishi S, Kanie S, Imaida K. Activation of MEK1/2-ERK1/2 signaling during NNK-induced lung carcinogenesis in female A/J mice. Cancer Med. 2016;5(5):903–913. doi:10.1002/cam4.652
  • Long ME, Gong K-Q, Eddy WE, et al. MEK1 regulates pulmonary macrophage inflammatory responses and resolution of acute lung injury. JCI Insight. 2019;4(23). doi:10.1172/jci.insight.132377
  • Villamor-Martinez E, Álvarez-Fuente M, Ghazi AMT, et al. Association of chorioamnionitis with bronchopulmonary dysplasia among preterm infants: a systematic review, meta-analysis, and metaregression. JAMA Netw Open. 2019;2(11):e1914611. doi:10.1001/jamanetworkopen.2019.14611
  • Poets CF, Lorenz L. Prevention of bronchopulmonary dysplasia in extremely low gestational age neonates: current evidence. Arch Dis Child Fetal Neonatal Ed. 2018;103(3):F285–F291. doi:10.1136/archdischild-2017-314264
  • Shrestha AK, Gopal VYN, Menon RT, Hagan JL, Huang S, Shivanna B. Lung omics signatures in a bronchopulmonary dysplasia and pulmonary hypertension-like murine model. Am J Physiol Lung Cell Mol Physiol. 2018;315(5):L734–L741. doi:10.1152/ajplung.00183.2018
  • Lopez J, Tait SWG. Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer. 2015;112(6):957–962. doi:10.1038/bjc.2015.85
  • Sucre JMS, Vickers KC, Benjamin JT, et al. Hyperoxia injury in the developing lung is mediated by mesenchymal expression of Wnt5A. Am J Respir Crit Care Med. 2020;201(10):1249–1262. doi:10.1164/rccm.201908-1513OC
  • de Oliveira LRC, Mimura LAN, Fraga-Silva TF, et al. Calcitriol prevents neuroinflammation and reduces blood-brain barrier disruption and local macrophage/microglia activation. Front Pharmacol. 2020;11:161. doi:10.3389/fphar.2020.00161
  • Das P, Acharya S, Prahaladan VM, et al. Chitin-derived AVR-48 prevents experimental bronchopulmonary dysplasia (BPD) and BPD-associated pulmonary hypertension in newborn mice. Int J Mol Sci. 2021;22(16):8547. doi:10.3390/ijms22168547
  • Gouveia L, Kraut S, Hadzic S, et al. Lung developmental arrest caused by PDGF-A deletion: consequences for the adult mouse lung. Am J Physiol Lung Cell Mol Physiol. 2020;318(4):L831–L843. doi:10.1152/ajplung.00295.2019
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. doi:10.1038/nprot.2008.73
  • Bi C-S, Li X, Qu H-L, et al. Calcitriol inhibits osteoclastogenesis in an inflammatory environment by changing the proportion and function of T helper cell subsets (Th2/Th17). Cell Prolif. 2020;53(6):e12827. doi:10.1111/cpr.12827
  • Radujkovic A, Schnitzler P, Ho AD, Dreger P, Luft T. Low serum vitamin D levels are associated with shorter survival after first-line azacitidine treatment in patients with myelodysplastic syndrome and secondary oligoblastic acute myeloid leukemia. Clin Nutr. 2017;36(2):542–551. doi:10.1016/j.clnu.2016.01.021
  • Chen X-Q, Wu S-H, Luo -Y-Y, et al. Lipoxin A attenuates bronchopulmonary dysplasia via upregulation of Let-7c and downregulation of TGF-β signaling pathway. Inflammation. 2017;40(6):2094–2108. doi:10.1007/s10753-017-0649-7
  • Zhang L, Bai X, Yan W. LncRNA-MALAT1, as a biomarker of neonatal BPD, exacerbates the pathogenesis of BPD by targeting miR-206. Am J Transl Res. 2021;13(2):462–479.
  • Kalikkot Thekkeveedu R, Guaman MC, Shivanna B. Bronchopulmonary dysplasia: a review of pathogenesis and pathophysiology. Respir Med. 2017;132:170–177. doi:10.1016/j.rmed.2017.10.014
  • Chaubey S, Thueson S, Ponnalagu D, et al. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther. 2018;9(1):173. doi:10.1186/s13287-018-0903-4
  • Moreira A, Winter C, Joy J, et al. Intranasal delivery of human umbilical cord Wharton’s jelly mesenchymal stromal cells restores lung alveolarization and vascularization in experimental bronchopulmonary dysplasia. Stem Cells Transl Med. 2020;9(2):221–234. doi:10.1002/sctm.18-0273
  • Willis GR, Fernandez-Gonzalez A, Anastas J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018;197(1):104–116. doi:10.1164/rccm.201705-0925OC
  • Ashley SL, Sjoding MW, Popova AP, et al. Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Sci Transl Med. 2020;12(556). doi:10.1126/scitranslmed.aau9959
  • Hirsch K, Taglauer E, Seedorf G, et al. Perinatal hypoxia-inducible factor stabilization preserves lung alveolar and vascular growth in experimental bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2020;202(8):1146–1158. doi:10.1164/rccm.202003-0601OC
  • Zhao W, Ma L, Cai C, Gong X. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-induced THP-1 macrophages. Int J Biol Sci. 2019;15(8):1571–1581. doi:10.7150/ijbs.34211
  • Savani RC. Modulators of inflammation in bronchopulmonary dysplasia. Semin Perinatol. 2018;42(7):459–470. doi:10.1053/j.semperi.2018.09.009
  • Witkowski SM, de Castro EM, Nagashima S, et al. Analysis of interleukins 6, 8, 10 and 17 in the lungs of premature neonates with bronchopulmonary dysplasia. Cytokine. 2020;131:155118. doi:10.1016/j.cyto.2020.155118
  • Cui TX, Fulton CT, Brady AE, Zhang Y-J, Goldsmith AM, Popova AP. Lung CD103dendritic cells and Clec9a signaling are required for neonatal hyperoxia-induced inflammatory responses to rhinovirus infection. Am J Physiol Lung Cell Mol Physiol. 2021;320(2):L193–L204. doi:10.1152/ajplung.00334.2019
  • Huang D, Fang F, Xu F. Hyperoxia induces inflammation and regulates cytokine production in alveolar epithelium through TLR2/4-NF-κB-dependent mechanism. Eur Rev Med Pharmacol Sci. 2016;20(7):1399–1410.
  • Ferder M, Inserra F, Manucha W, Ferder L. The world pandemic of vitamin D deficiency could possibly be explained by cellular inflammatory response activity induced by the renin-angiotensin system. Am J Physiol Cell Physiol. 2013;304(11):C1027–C1039. doi:10.1152/ajpcell.00403.2011
  • Huang F, Ju Y-H, Wang H-B, Li Y-N. Maternal vitamin D deficiency impairs Treg and Breg responses in offspring mice and deteriorates allergic airway inflammation. Allergy Asthma Clin Immunol. 2020;16:89. doi:10.1186/s13223-020-00487-1
  • Han H, Chung SI, Park HJ, et al. Obesity-induced vitamin D deficiency contributes to lung fibrosis and airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2021;64(3):357–367. doi:10.1165/rcmb.2020-0086OC
  • Sari E, Oztay F, Tasci AE. Vitamin D modulates E-cadherin turnover by regulating TGF-β and Wnt signalings during EMT-mediated myofibroblast differentiation in A459 cells. J Steroid Biochem Mol Biol. 2020;202:105723. doi:10.1016/j.jsbmb.2020.105723
  • Fitch N, Becker AB, HayGlass KT. Vitamin D [1,25(OH)2D3] differentially regulates human innate cytokine responses to bacterial versus viral pattern recognition receptor stimuli. J Immunol. 2016;196(7):2965–2972. doi:10.4049/jimmunol.1500460
  • Anderson J, Do LAH, Toh ZQ, et al. Vitamin D induces differential effects on inflammatory responses during bacterial and/or viral stimulation of human peripheral blood mononuclear cells. Front Immunol. 2020;11:602. doi:10.3389/fimmu.2020.00602
  • Liu C, Chen Z, Li W, Huang L, Zhang Y. Vitamin D enhances alveolar development in antenatal lipopolysaccharide-treated rats through the suppression of interferon-γ production. Front Immunol. 2017;8:1923. doi:10.3389/fimmu.2017.01923
  • Mandell E, Seedorf G, Gien J, Abman SH. Vitamin D treatment improves survival and infant lung structure after intra-amniotic endotoxin exposure in rats: potential role for the prevention of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2014;306(5):L420–L428. doi:10.1152/ajplung.00344.2013
  • Hauseman ZJ, Harvey EP, Newman CE, et al. Homogeneous oligomers of pro-apoptotic BAX reveal structural determinants of mitochondrial membrane permeabilization. Mol Cell. 2020;79(1):68–83.e7. doi:10.1016/j.molcel.2020.05.029
  • Tan Z, Xiao L, Tang M, et al. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy. Theranostics. 2018;8(9):2329–2347. doi:10.7150/thno.21451
  • Ngoi NYL, Choong C, Lee J, et al. Targeting mitochondrial apoptosis to overcome treatment resistance in cancer. Cancers. 2020;12(3):574. doi:10.3390/cancers12030574
  • Sorrentino G, Comel A, Mantovani F, Del Sal G. Regulation of mitochondrial apoptosis by Pin1 in cancer and neurodegeneration. Mitochondrion. 2014;19(Pt A):88–96. doi:10.1016/j.mito.2014.08.003
  • Yang Y, Wang G, Wu W, et al. Camalexin induces apoptosis via the ROS-ER stress-mitochondrial apoptosis pathway in AML cells. Oxid Med Cell Longev. 2018;2018:7426950. doi:10.1155/2018/7426950
  • Pan X, Yan D, Wang D, et al. Mitochondrion-mediated apoptosis induced by acrylamide is regulated by a balance between Nrf2 antioxidant and MAPK signaling pathways in PC12 cells. Mol Neurobiol. 2017;54(6):4781–4794. doi:10.1007/s12035-016-0021-1
  • Linke R, Pries R, Könnecke M, et al. The MEK1/2-ERK1/2 pathway is activated in chronic rhinosinusitis with nasal polyps. Arch Immunol Ther Exp. 2014;62(3):217–229. doi:10.1007/s00005-014-0281-2
  • Jiménez-Sousa MÁ, Martínez I, Medrano LM, Fernández-Rodríguez A, Resino S. Vitamin D in human immunodeficiency virus infection: influence on immunity and disease. Front Immunol. 2018;9:458. doi:10.3389/fimmu.2018.00458