314
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

Diagnostic and Prognostic Value of Monocyte Distribution Width in Sepsis

, ORCID Icon &
Pages 4107-4117 | Published online: 20 Jul 2022

References

  • Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. Sepsis and septic shock. Nat Rev Dis. 2016;2(1):16046. doi:10.1038/nrdp.2016.46
  • Grande E, Grippo F, Frova L, et al. The increase of sepsis-related mortality in Italy: a nationwide study, 2003–2015. Eur J Clin Microbiol Infect Dis. 2019;38(9):1701–1708. doi:10.1007/s10096-019-03601-3
  • Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study. Lancet. 2020;395(10219):200–211. doi:10.1016/S0140-6736(19)32989-7
  • Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637. doi:10.1097/CCM.0b013e31827e83af
  • Spaeth B, Shephard M, Kokcinar R, et al. Impact of point-of-care testing for white blood cell count on triage of patients with infection in the remote Northern Territory of Australia. Pathology. 2019;51(5):512–517. doi:10.1016/j.pathol.2019.04.003
  • Martinez-Iribarren A, Tejedor X, Sala Sanjaume À, et al. Performance evaluation of the new hematology analyzer UniCel DxH 900. Int J Lab Hematol. 2021;43(4):623–631. doi:10.1111/ijlh.13448
  • Fajgenbaum DC, June CH, Longo DL. Cytokine storm. N Engl J Med. 2020;383(23):2255–2273. doi:10.1056/NEJMra2026131
  • Goasguen JE, Bennett JM, Bain BJ, et al. Morphological evaluation of monocytes and their precursors. Haematologica. 2009;94(7):994–997. doi:10.3324/haematol.2008.005421
  • Bomans K, Schenz J, Sztwiertnia I, et al. Sepsis induces a long-lasting state of trained immunity in bone marrow monocytes. Front Immunol. 2018;9:2685. doi:10.3389/fimmu.2018.02685
  • Shen T, Cao X, Shi J, et al. The morphological changes of monocytes in peripheral blood as a potential indicator for predicting active pulmonary tuberculosis. Clin Chim Acta. 2018;481:189–192. doi:10.1016/j.cca.2018.03.015
  • Schulz M, Zambrano F, Schuppe H-C, et al. Monocyte-derived extracellular trap (MET) formation induces aggregation and affects motility of human spermatozoa in vitro. Syst Biol Reprod Med. 2019;65(5):357–366. doi:10.1080/19396368.2019.1624873
  • Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762–774. doi:10.1038/nri3070
  • Fingerle G, Pforte A, Passlick B, et al. The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood. 1993;82(10):3170–3176. doi:10.1182/blood.V82.10.3170.3170
  • Wong KL, Yeap WH, Tai JJY, et al. The three human monocyte subsets: implications for health and disease. Immunol Res. 2012;53(1–3):41–57. doi:10.1007/s12026-012-8297-3
  • Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–80. doi:10.1182/blood-2010-02-258558
  • Skrzeczyñska J, Kobylarz K, Hartwich Z, et al. CD14 + CD16 + monocytes in the course of sepsis in neonates and small children: monitoring and functional studies. Scand J Immunol. 2002;55(6):629–638. doi:10.1046/j.1365-3083.2002.01092.x
  • Castano D, Garcia LF, Rojas M. Increased frequency and cell death of CD16+ monocytes with Mycobacterium tuberculosis infection. Tuberculosis. 2011;91(5):348–360. doi:10.1016/j.tube.2011.04.002
  • Han J, Wang B, Han N, et al. CD14(high)CD16(+) rather than CD14(low)CD16(+) monocytes correlate with disease progression in chronic HIV-infected patients. J Acquir Immune Defic Syndr. 2009;52(5):553–559. doi:10.1097/QAI.0b013e3181c1d4fe
  • Rodriguez-Munoz Y, Martín-Vílchez S, López-Rodríguez R, et al. Peripheral blood monocyte subsets predict antiviral response in chronic hepatitis C. Aliment Pharmacol Ther. 2011;34(8):960–971. doi:10.1111/j.1365-2036.2011.04807.x
  • Jones JR, Ireland R. Morphological changes in a case of SARS-CoV-2 infection. Blood. 2020;135(25):2324. doi:10.1182/blood.2020006665
  • Zhang JY, Zou Z-S, Huang A, et al. Hyper-activated pro-inflammatory CD16 monocytes correlate with the severity of liver injury and fibrosis in patients with chronic hepatitis B. PLoS One. 2011;6(3):e17484. doi:10.1371/journal.pone.0017484
  • Rossol M, Kraus S, Pierer M, et al. The CD14 bright CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum. 2012;64(3):671–677. doi:10.1002/art.33418
  • Heine GH, Ulrich C, Seibert E, et al. CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int. 2008;73(5):622–629. doi:10.1038/sj.ki.5002744
  • Urra X, Cervera A, Obach V, et al. Monocytes are major players in the prognosis and risk of infection after acute stroke. Stroke. 2009;40(4):1262–1268. doi:10.1161/STROKEAHA.108.532085
  • Reinhart K, Daniels R, Kissoon N, et al. Recognizing sepsis as a global health priority – a WHO resolution. N Engl J Med. 2017;377(5):414–417. doi:10.1056/NEJMp1707170
  • Rhee C, Dantes R, Epstein L, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009–2014. JAMA. 2017;318(13):1241–1249. doi:10.1001/jama.2017.13836
  • Holder AL, Gupta N, Lulaj E, et al. Predictors of early progression to severe sepsis or shock among emergency department patients with nonsevere sepsis. Int J Emerg Med. 2016;9(1):10. doi:10.1186/s12245-016-0106-7
  • Agnello L, Iacona A, Maestri S, et al. Independent validation of sepsis index for sepsis screening in the emergency department. Diagnostics. 2021;11(7):1292
  • Agnello L, Iacona A, Lo Sasso B, et al. A new tool for sepsis screening in the Emergency Department. Clin Chem Lab Med. 2021;59(9):1600–1605. doi:10.1515/cclm-2021-0208
  • Crouser ED, Parrillo JE, Seymour C, et al. Improved early detection of sepsis in the ED with a novel monocyte distribution width biomarker. Chest. 2017;152(3):518–526. doi:10.1016/j.chest.2017.05.039
  • Agnello L, Bivona G, Vidali M, et al. Monocyte distribution width (MDW) as a screening tool for sepsis in the emergency department. Clin Chem Lab Med. 2020;58(11):1951–1957. doi:10.1515/cclm-2020-0417
  • Paoli CJ, Reynolds MA, Coles C, et al. Predicted economic benefits of a novel biomarker for earlier sepsis identification and treatment: a counterfactual analysis. Crit Care Explor. 2019;1(8):e0029. doi:10.1097/CCE.0000000000000029
  • Crouser ED, Parrillo JE, Martin GS, et al. Monocyte distribution width enhances early sepsis detection in the emergency department beyond SIRS and qSOFA. J Intensive Care. 2020;8:33. doi:10.1186/s40560-020-00446-3
  • Agnello L, Vidali M, Sasso BL, et al. Monocyte distribution width (MDW) as a screening tool for early detecting sepsis: a systematic review and meta-analysis. Clin Chem Lab Med. 2022;60(5):786–792. doi:10.1515/cclm-2021-1331
  • Crouser ED, Parrillo JE, Seymour CW, et al. Monocyte distribution width: a novel indicator of sepsis-2 and sepsis-3 in high-risk emergency department patients. Crit Care Med. 2019;47(8):1018–1025. doi:10.1097/CCM.0000000000003799
  • Hou SK, Lin HA, Chen SC, Lin CF, Lin SF. Monocyte distribution width, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio improves early prediction for sepsis at the emergency. J Pers Med. 2021;11(8):732. doi:10.3390/jpm11080732
  • Woo A, Oh DK, Park C-J, et al. Monocyte distribution width compared with C-reactive protein and procalcitonin for early sepsis detection in the emergency department. PLoS One. 2021;16(4):e0250101. doi:10.1371/journal.pone.0250101
  • Hausfater P, Robert Boter N, Morales Indiano C, et al. Monocyte distribution width (MDW) performance as an early sepsis indicator in the emergency department: comparison with CRP and procalcitonin in a multicenter international European prospective study. Crit Care. 2021;25(1):227. doi:10.1186/s13054-021-03622-5
  • Raman V, Laupland K. Challenges to reporting the global trends in the epidemiology of ICU-treated sepsis and septic shock. Curr Infect Dis Rep. 2021;23:23. doi:10.1007/s11908-021-00767-w
  • Agnello L, Sasso BL, Giglio RV, et al. Monocyte distribution width as a biomarker of sepsis in the intensive care unit: a pilot study. Ann Clin Biochem. 2021;58(1):70–73. doi:10.1177/0004563220970447
  • Polilli E, Frattari A, Esposito JE, et al. Monocyte distribution width (MDW) as a new tool for the prediction of sepsis in critically ill patients: a preliminary investigation in an intensive care unit. BMC Emerg Med. 2021;21(1):147. doi:10.1186/s12873-021-00521-4
  • Piva E, Zuin J, Pelloso M, et al. Monocyte distribution width (MDW) parameter as a sepsis indicator in intensive care units. Clin Chem Lab Med. 2021;59(7):1307–1314. doi:10.1515/cclm-2021-0192
  • Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis. Lancet. 2017;390(10104):1770–1780. doi:10.1016/S0140-6736(17)31002-4
  • Celik IH, Hanna M, Canpolat FE, Pammi M. Diagnosis of neonatal sepsis: the past, present and future. Pediatr Res. 2021;91:337–350.
  • Weston EJ, Pondo T, Lewis MM, et al. The burden of invasive early-onset neonatal sepsis in the United States, 2005–2008. Pediatr Infect Dis J. 2011;30(11):937–941. doi:10.1097/INF.0b013e318223bad2
  • Oza S, Lawn JE, Hogan DR, et al. Neonatal cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000–2013. Bull World Health Organ. 2015;93(1):19–28. doi:10.2471/BLT.14.139790
  • Cantey JB, Baird SD. Ending the culture of culture-negative sepsis in the neonatal ICU. Pediatrics. 2017;140(4). doi:10.1542/peds.2017-0044
  • Ting JY, Synnes A, Roberts A, et al. Association between antibiotic use and neonatal mortality and morbidities in very low-birth-weight infants without culture-proven sepsis or necrotizing enterocolitis. JAMA Pediatr. 2016;170(12):1181–1187. doi:10.1001/jamapediatrics.2016.2132
  • Celik HT, Portakal O, Yiğit Ş, et al. Efficacy of new leukocyte parameters versus serum C-reactive protein, procalcitonin, and interleukin-6 in the diagnosis of neonatal sepsis. Pediatr Int. 2016;58(2):119–125. doi:10.1111/ped.12754
  • Nam M, Son BH, Seo JE, et al. Improved diagnostic and prognostic power of combined delta neutrophil index and mean platelet volume in pediatric sepsis. Ann Clin Lab Sci. 2018;48(2):223–230.
  • McWilliam S, Riordan A. How to use: C-reactive protein. Arch Dis Child Educ Pract Ed. 2010;95(2):55–58. doi:10.1136/adc.2009.174367
  • Irwin AD, Carrol ED. Procalcitonin. Arch Dis Child Educ Pract Ed. 2011;96(6):228–233. doi:10.1136/archdischild-2011-300178
  • Silveira RC, Procianoy RS. Evaluation of interleukin-6, tumour necrosis factor-alpha and interleukin-1 beta for early diagnosis of neonatal sepsis. Acta Paediatr. 1999;88(6):647–650. doi:10.1080/08035259950169314
  • Brown JVE, Meader N, Wright K, et al. Assessment of C-reactive protein diagnostic test accuracy for late-onset infection in newborn infants: a systematic review and meta-analysis. JAMA Pediatr. 2020;174(3):260–268. doi:10.1001/jamapediatrics.2019.5669
  • Celik IH, Demirel G, Canpolat FE, Erdeve O, Dilmen U. Inflammatory responses to hepatitis B virus vaccine in healthy term infants. Eur J Pediatr. 2013;172(6):839–842. doi:10.1007/s00431-013-1946-2
  • Lacaze-Masmonteil T, Rosychuk RJ, Robinson JL. Value of a single C-reactive protein measurement at 18 h of age. Arch Dis Child Fetal Neonatal Ed. 2014;99(1):F76–9. doi:10.1136/archdischild-2013-303984
  • Altunhan H, Annagür A, Örs R, Mehmetoğlu I. Procalcitonin measurement at 24 hours of age may be helpful in the prompt diagnosis of early-onset neonatal sepsis. Int J Infect Dis. 2011;15(12):e854–8. doi:10.1016/j.ijid.2011.09.007
  • Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. doi:10.1016/j.ebiom.2020.102763
  • Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi:10.1016/S0140-6736(20)30628-0
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5
  • Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517–528. doi:10.1007/s00281-017-0639-8
  • Karimi Shahri M, Niazkar HR, Rad F. COVID-19 and hematology findings based on the current evidences: a puzzle with many missing pieces. Int J Lab Hematol. 2021;43(2):160–168. doi:10.1111/ijlh.13412
  • Ognibene A, Lorubbio M, Magliocca P, et al. Elevated monocyte distribution width in COVID-19 patients: the contribution of the novel sepsis indicator. Clin Chim Acta. 2020;509:22–24. doi:10.1016/j.cca.2020.06.002
  • Zeng X, Xing H, Wei Y, et al. Monocyte volumetric parameters and lymph index are increased in SARS-CoV-2 infection. Int J Lab Hematol. 2020;42(6):e266–e269. doi:10.1111/ijlh.13323
  • Lippi G, Sanchis-Gomar F, Henry BM. Pooled analysis of monocyte distribution width in subjects with SARS-CoV-2 infection. Int J Lab Hematol. 2021;43(4):O161–o163. doi:10.1111/ijlh.13482
  • Lin HA, Lin S-F, Chang H-W, et al. Clinical impact of monocyte distribution width and neutrophil-to-lymphocyte ratio for distinguishing COVID-19 and influenza from other upper respiratory tract infections: a pilot study. PLoS One. 2020;15(11):e0241262. doi:10.1371/journal.pone.0241262
  • Vasse M, Ballester M-C, Ayaka D, et al. Interest of the cellular population data analysis as an aid in the early diagnosis of SARS-CoV-2 infection. Int J Lab Hematol. 2021;43(1):116–122. doi:10.1111/ijlh.13312
  • Riva G, Castellano S, Nasillo V, et al. Monocyte distribution width (MDW) as novel inflammatory marker with prognostic significance in COVID-19 patients. Sci Rep. 2021;11(1):12716. doi:10.1038/s41598-021-92236-6
  • Polilli E, Sozio F, Frattari A, et al. Comparison of monocyte distribution width (MDW) and procalcitonin for early recognition of sepsis. PLoS One. 2020;15(1):e0227300. doi:10.1371/journal.pone.0227300
  • Lopez-Molina M, Ganduxé XT, Iribarren AM, et al. Influence of K2-EDTA and K3-EDTA tubes for monocyte distribution width measurement. Clinica Chimica Acta. 2019;493:S384. doi:10.1016/j.cca.2019.03.819
  • Agnello L, Lo Sasso B, Bivona G, et al. Reference interval of monocyte distribution width (MDW) in healthy blood donors. Clin Chim Acta. 2020;510:272–277. doi:10.1016/j.cca.2020.07.036
  • Agnello L, Lo Sasso B, Vidali M, et al. Validation of monocyte distribution width decisional cutoff for sepsis detection in the acute setting. Int J Lab Hematol. 2021;43(4):O183–O185. doi:10.1111/ijlh.13496
  • Lu Y, Wang G, Li C. Expression of peripheral monocytic programmed death ligand-1 in severe sepsis combined with HBV-related cirrhosis. A pilot observational study. Cent Eur J Immunol. 2021;46(2):217–224. doi:10.5114/ceji.2021.108179
  • Sun T, Wu B, Wang J, Yuan T, Huang H, Xu D. Evaluation of the diagnostic efficacy of monocyte parameters and MCP-1 to distinguishing active tuberculosis from latent tuberculosis. Clin Lab. 2019;65(7):2411–2502
  • Li HZ, Wang Q, Zhang YY, et al. Onset of coronary heart disease is associated with HCMV infection and increased CD14 (+)CD16 (+) monocytes in a population of Weifang, China. Biomed Environ Sci. 2020;33(8):573–582. doi:10.3967/bes2020.076