347
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Interrelationship and Sequencing of Interleukins4, 13, 31, and 33 – An Integrated Systematic Review: Dermatological and Multidisciplinary Perspectives

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, & ORCID Icon show all
Pages 5163-5184 | Published online: 08 Sep 2022

References

  • Catalan-Dibene J, McIntyre LL, Zlotnik A. Interleukin 30 to interleukin 40. J Interferon Cytokine Res. 2018;38:423–439. doi:10.1089/jir.2018.0089
  • Onuora S. Novel cytokine, IL-41, linked with PsA. Nat Rev Rheumatol. 2019;15:636.
  • Justiz Vaillant AA, Qurie A. Interleukin. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
  • Maier E, Werner D, Duschl A, Bohle B, Horejs-Hoeck J. Human Th2 but not Th9 cells release IL-31 in a STAT6/NF-κB-dependent way. J Immunol. 2014;193(2):645–654. doi:10.4049/jimmunol.1301836
  • Macedo RBV, Kakehasi AM, Melo de Andrade MV. IL33 in rheumatoid arthritis: potential contribution to pathogenesis. Rev Bras Reumatol. 2016;56:451–457. doi:10.1016/j.rbr.2016.01.006
  • Interleukin 13. Available from: https://en.wikipedia.org/wiki/Interleukin_13#:~:text=IL%2D13%20is%20a%20cytokine,fibrosis%20and%20chitinase%20up%2Dregulation. Accessed February 10, 2022.
  • Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev. 2008;19(5–6):347–356. doi:10.1016/j.cytogfr.2008.08.003
  • Furukawa S, Moriyama M, Miyake K, et al. Interleukin-33 produced by M2 macrophages and other immune cells contributes to Th2 immune reaction of IgG4-related disease. Sci Rep. 2017;7:42413. doi:10.1038/srep42413
  • Chan BCL, Lam CWK, Tam LS, Wong CK. IL33: roles in allergic inflammation and therapeutic perspectives. Front Immunol. 2019;10:364. doi:10.3389/fimmu.2019.00364
  • Di Salvo E, Ventura-Spagnolo E, Casciaro M, Navarra M, Gangemi S. IL-33/IL-31 axis: a potential inflammatory pathway. Mediators Inflamm. 2018;2018:3858032. doi:10.1155/2018/3858032
  • Hershey GK. IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol. 2003;111(4):677–90, quiz 691. doi:10.1067/mai.2003.1333
  • Jenkins SJ, Ruckerl D, Cook PC, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011;332:1284–1288. doi:10.1126/science.1204351
  • Ho I-C, Miaw S-C. Regulation of IL-4 expression in immunity and diseases. Adv Exp Med Biol. 2016;941:31–77. doi:10.1007/978-94-024-0921-5_3
  • Sempowski GD, Beckmann MP, Derdak S, Phipps RP. Subsets of murine lung fibroblasts express membrane-bound and soluble IL-4 receptors. role of IL-4 in enhancing fibroblast proliferation and collagen synthesis. J Immunol. 1994;152:3606–3614.
  • Sommer M, Eismann U, Gerth J, Stein G. Interleukin 4 co-stimulates the PDGF-BB- and BFGF-mediated proliferation of mesangial cells and myofibroblasts. Nephron. 2002;92:868–880, discussion 880–882. doi:10.1159/000065451
  • Levick SP, McLarty JL, Murray DB, Freeman RM, Carver WE, Brower GL. Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertens. 2009;53(6):1041–1047. doi:10.1161/HYPERTENSIONAHA.108.123158
  • Yu Q, Horak K, Larson DF. Role of T lymphocytes in hypertension-induced cardiac extracellular matrix remodeling. Hypertens. 2006;48(1):98–104. doi:10.1161/01.HYP.0000227247.27111.b2
  • Peng H, Yang X-P, Carretero OA, et al. Angiotensin II-induced dilated cardiomyopathy in Balb/c but not C57BL/6J mice. Exp Physiol. 2011;96:756–764. doi:10.1113/expphysiol.2011.057612
  • Roselló-Lletí E, Rivera M, Bertomeu V, Cortés R, Jordán A, González-Molina A. Interleukin-4 and cardiac fibrosis in patients with heart failure. Rev Esp Cardiol. 2007;60:777–780. doi:10.1157/13108284
  • Catapano G, Pedone C, Nunziata E, Zizzo A, Passantino A, Incalzi RA. Nutrient intake and serum cytokine pattern in elderly people with heart failure. Eur J Heart Fail. 2008;10:428–434. doi:10.1016/j.ejheart.2008.02.016
  • Kanellakis P, Ditiatkovski M, Kostolias G, Bobik A. A pro-fibrotic role for interleukin-4 in cardiac pressure overload. Cardiovasc Res. 2012;95:77–85. doi:10.1093/cvr/cvs142
  • van Heuven-Nolsen D, De Kimpe SJ, Muis T, et al. Opposite role of interferon-gamma and interleukin-4 on the regulation of blood pressure in mice. Biochem Biophys Res Commun. 1999;254:816–820. doi:10.1006/bbrc.1998.8742
  • Lee YW, Kühn H, Kaiser S, Hennig B, Daugherty A, Toborek M. Interleukin 4 induces transcription of the 15-lipoxygenase I gene in human endothelial cells. J Lipid Res. 2001;42:783–791. doi:10.1016/S0022-2275(20)31641-2
  • Yamaji-Kegan K, Su Q, Angelini DJ, Myers AC, Cheadle C, Johns RA. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMalpha) increases lung inflammation and activates pulmonary microvascular endothelial cells via an IL-4-dependent mechanism. J Immunol. 2010;185:5539–5548. doi:10.4049/jimmunol.0904021
  • Yamaji-Kegan K, Takimoto E, Zhang A, et al. Hypoxia-induced mitogenic factor (FIZZ1/RELMα) induces endothelial cell apoptosis and subsequent interleukin-4-dependent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2014;306:L1090–1103. doi:10.1152/ajplung.00279.2013
  • Shintani Y, Ito T, Fields L, et al. IL-4 as a repurposed biological drug for myocardial infarction through augmentation of reparative cardiac macrophages: proof-of-concept data in mice. Sci Rep. 2017;7:6877. doi:10.1038/s41598-017-07328-z
  • Sicklinger F, Meyer IS, Li X, et al. Basophils balance healing after myocardial infarction via IL-4/IL-13. J Clin Invest. 2021;131:136778. doi:10.1172/JCI136778
  • Minty A, Chalon P, Derocq JM, et al. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature. 1993;362:248–250. doi:10.1038/362248a0
  • McKenzie AN, Culpepper JA, de Waal Malefyt R, et al. Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci USA. 1993;90:3735–3739. doi:10.1073/pnas.90.8.3735
  • Akaiwa M, Yu B, Umeshita-Suyama R, et al. Localization of human interleukin 13 receptor in non-haematopoietic cells. Cytokine. 2001;13:75–84. doi:10.1006/cyto.2000.0814
  • Cieslik KA, Taffet GE, Carlson S, Hermosillo J, Trial J, Entman ML. Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart. J Mol Cell Cardiol. 2011;50:248–256. doi:10.1016/j.yjmcc.2010.10.019
  • Amir O, Spivak I, Lavi I, Rahat MA. Changes in the monocytic subsets CD14dimCD16+ and CD14++CD16− in chronic systolic heart failure patients. Mediators Inflamm. 2012;2012:616384. doi:10.1155/2012/616384
  • Ohtsuka T, Inoue K, Hara Y, et al. Serum markers of angiogenesis and myocardial ultrasonic tissue characterization in patients with dilated cardiomyopathy. Eur J Heart Fail. 2005;7:689–695. doi:10.1016/j.ejheart.2004.09.011
  • Stanya KJ, Jacobi D, Liu S, et al. Direct control of hepatic glucose production by interleukin-13 in mice. J Clin Invest. 2013;123:261–271. doi:10.1172/JCI64941
  • Hofmann U, Knorr S, Vogel B, et al. Interleukin-13 deficiency aggravates healing and remodeling in male mice after experimental myocardial infarction. Circ Heart Fail. 2014;7:822–830. doi:10.1161/CIRCHEARTFAILURE.113.001020
  • Parisi V, Cabaro S, D’Esposito V, et al. Epicardial adipose tissue and IL-13 response to myocardial injury drives left ventricular remodeling after ST elevation myocardial infarction. Front Physiol. 2020;11:575181. doi:10.3389/fphys.2020.575181
  • Yuan S-M. Interleukin-13 in the pathogenesis of pulmonary artery hypertension. J Lab Med. 2019;43:5–11. doi:10.1515/labmed-2018-0323
  • Cihakova D, Barin JG, Afanasyev M, et al. Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation. Am J Pathol. 2008;172:1195–1208. doi:10.2353/ajpath.2008.070207
  • Yang H, Chen Y, Gao C. Interleukin-13 reduces cardiac injury and prevents heart dysfunction in viral myocarditis via enhanced M2 macrophage polarization. Oncotarget. 2017;8:99495–99503. doi:10.18632/oncotarget.20111
  • Rotter Sopasakis V, Sandstedt J, Johansson M, et al. Toll-like receptor-mediated inflammation markers are strongly induced in heart tissue in patients with cardiac disease under both ischemic and non-ischemic conditions. Int J Cardiol. 2019;293:238–247. doi:10.1016/j.ijcard.2019.06.033
  • Vianello E, Marrocco-Trischitta Massimiliano M, Dozio E, et al. Correlational study on altered epicardial adipose tissue as a stratification risk factor for valve disease progression through IL-13 signaling. J Mol Cell Cardiol. 2019;132:210–218. doi:10.1016/j.yjmcc.2019.05.012
  • Dillon SR, Sprecher C, Hammond A, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004;5:752–760. doi:10.1038/ni1084
  • Pflanz S, Hibbert L, Mattson J, et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol. 2004;172:2225–2231. doi:10.4049/jimmunol.172.4.2225
  • Song H, Peng Y, Zhou B, et al. Associations between interleukin-31 gene polymorphisms and dilated cardiomyopathy in a Chinese population. Dis Markers. 2017;2017:4191365. doi:10.1155/2017/4191365
  • Saito M, Yoshida K, Hibi M, Taga T, Kishimoto T. Molecular cloning of a murine IL-6 receptor-associated signal transducer, Gp130, and its regulated expression in vivo. J Immunol. 1992;148:4066–4071.
  • Lafontant PJ, Burns AR, Donnachie E, Haudek SB, Smith CW, Entman ML. Oncostatin M differentially regulates CXC chemokines in mouse cardiac fibroblasts. Am J Physiol Cell Physiol. 2006;291:C18–26. doi:10.1152/ajpcell.00322.2005
  • Kunsleben N, Rüdrich U, Gehring M, Novak N, Kapp A, Raap U. IL-31 induces chemotaxis, calcium mobilization, release of reactive oxygen species, and CCL26 in eosinophils, which are capable to release IL-31. J Invest Dermatol. 2015;135:1908–1911. doi:10.1038/jid.2015.106
  • Cheung PF-Y, Wong C-K, Ho AW-Y, Hu S, Chen D-P, Lam CW-K. Activation of human eosinophils and epidermal keratinocytes by Th2 Cytokine IL-31: implication for the immunopathogenesis of atopic dermatitis. Int Immunol. 2010;22:453–467. doi:10.1093/intimm/dxq027
  • Tseng W-N, Lo M-H, Guo MM-H, Hsieh K-S, Chang W-C, Kuo H-C. IL-31 associated with coronary artery lesion formation in Kawasaki disease. PLoS One. 2014;9:e105195. doi:10.1371/journal.pone.0105195
  • Miller AM. Role of IL-33 in inflammation and disease. J Inflamm. 2011;8:22. doi:10.1186/1476-9255-8-22
  • Pascual-Reguant A, BayatSarmadi J, Baumann C, et al. TH17 cells express ST2 and are controlled by the alarmin IL-33 in the small intestine. Mucosal Immunol. 2017;10:1431–1442. doi:10.1038/mi.2017.5
  • Jha HC, Divya A, Prasad J, Mittal A. Plasma circulatory markers in male and female patients with coronary artery disease. Heart Lung J Crit Care. 2010;39:296–303. doi:10.1016/j.hrtlng.2009.10.005
  • Demyanets S, Speidl WS, Tentzeris I, et al. Soluble ST2 and interleukin-33 levels in coronary artery disease: relation to disease activity and adverse outcome. PLoS One. 2014;9:e95055. doi:10.1371/journal.pone.0095055
  • Yanaba K, Yoshizaki A, Asano Y, Kadono T, Sato S. Serum IL-33 levels are raised in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. Clin Rheumatol. 2011;30:825–830. doi:10.1007/s10067-011-1686-5
  • Komine M, Sato A, Adachi A, et al. Nuclear expression of IL-33 in epidermal keratinocyte is up-regulated in differentiated cells, while suppressed in proliferating cells. J Dermatol Sci. 2016;84:e43. doi:10.1016/j.jdermsci.2016.08.138
  • Travers J, Rochman M, Wen T, Rothenberg ME. IL-33 is selectively expressed by esophageal basal layer epithelial cells during allergic inflammation. J Allergy Clin Immunol. 2016;137:AB228. doi:10.1016/j.jaci.2015.12.879
  • Oshikawa K, Yanagisawa K, Tominaga S, Sugiyama Y. Expression and function of the ST2 gene in a murine model of allergic airway inflammation. Clin Exp Allergy J. 2002;32:1520–1526. doi:10.1046/j.1365-2745.2002.01494.x
  • Griesenauer B, Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol. 2017;8:475. doi:10.3389/fimmu.2017.00475
  • Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie ANJ, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117:1538–1549. doi:10.1172/JCI30634
  • Chen W-Y, Hong J, Gannon J, Kakkar R, Lee RT. Myocardial pressure overload induces systemic inflammation through endothelial cell IL-33. Proc Natl Acad Sci USA. 2015;112:7249–7254. doi:10.1073/pnas.1424236112
  • Veeraveedu PT, Sanada S, Okuda K, et al. Ablation of IL-33 gene exacerbate myocardial remodeling in mice with heart failure induced by mechanical stress. Biochem Pharmacol. 2017;138:73–80. doi:10.1016/j.bcp.2017.04.022
  • Dieplinger B, Mueller T. Soluble ST2 in heart failure. Clin Chim Acta Int J Clin Chem. 2015;443:57–70. doi:10.1016/j.cca.2014.09.021
  • Ojji DB, Opie LH, Lecour S, Lacerda L, Adeyemi OM, Sliwa K. The effect of left ventricular remodelling on soluble ST2 in a cohort of hypertensive subjects. J Hum Hypertens. 2014;28:432–437. doi:10.1038/jhh.2013.130
  • Ho JE, Larson MG, Ghorbani A, et al. Soluble ST2 predicts elevated SBP in the community. J Hypertens. 2013;31:1431–1436;discussion 1436. doi:10.1097/HJH.0b013e3283611bdf
  • Coglianese EE, Larson MG, Vasan RS, et al. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham heart study. Clin Chem. 2012;58:1673–1681. doi:10.1373/clinchem.2012.192153
  • Zheng Y-G, Yang T, He J-G, et al. Plasma soluble ST2 levels correlate with disease severity and predict clinical worsening in patients with pulmonary arterial hypertension. Clin Cardiol. 2014;37:365–370. doi:10.1002/clc.22262
  • Agoston-Coldea L, Lupu S, Hicea S, Paradis A, Mocan T. Serum levels of the soluble IL-1 receptor family member ST2 and right ventricular dysfunction. Biomark Med. 2014;8:95–106. doi:10.2217/bmm.13.116
  • Daniels LB, Clopton P, Iqbal N, Tran K, Maisel AS. Association of ST2 levels with cardiac structure and function and mortality in outpatients. Am Heart J. 2010;160:721–728. doi:10.1016/j.ahj.2010.06.033
  • Carlomagno G, Messalli G, Melillo RM, et al. Serum soluble ST2 and interleukin-33 levels in patients with pulmonary arterial hypertension. Int J Cardiol. 2013;168:1545–1547. doi:10.1016/j.ijcard.2012.12.031
  • Mohsen K. Serum levels of interleukin (IL)-33 in patients with ischemic heart disease. MOJ Immunol. 2018;6(2):29–32.
  • McLaren JE, Michael DR, Salter RC, et al. IL-33 reduces macrophage foam cell formation. J Immunol. 2010;185:1222–1229. doi:10.4049/jimmunol.1000520
  • Seki K, Sanada S, Kudinova AY, et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail. 2009;2:684–691. doi:10.1161/CIRCHEARTFAILURE.109.873240
  • Ruisong M, Xiaorong H, Gangying H, et al. The protective role of interleukin-33 in myocardial ischemia and reperfusion is associated with decreased HMGB1 expression and up-regulation of the P38 MAPK signaling pathway. PLoS One. 2015;10:e0143064. doi:10.1371/journal.pone.0143064
  • Miller AM, Xu D, Asquith DL, et al. IL-33 reduces the development of atherosclerosis. J Exp Med. 2008;205:339–346. doi:10.1084/jem.20071868
  • Abston ED, Barin JG, Cihakova D, et al. IL-33 independently induces eosinophilic pericarditis and cardiac dilation: ST2 improves cardiac function. Circ Heart Fail. 2012;5:366–375. doi:10.1161/CIRCHEARTFAILURE.111.963769
  • Miller AM, Liew FY. The IL-33/ST2 pathway–a new therapeutic target in cardiovascular disease. Pharmacol Ther. 2011;131:179–186. doi:10.1016/j.pharmthera.2011.02.005
  • Tatu AL, Ionescu MA. Multiple autoimmune syndrome type 3- thyroiditis, vitiligo and alopecia areata. Acta Endocrinol Buchar. 2017;13:124–125. doi:10.4183/aeb.2017.124
  • Nwabudike LC, Tatu AL, Happle R, et al. Koebner’s sheep in wolf’s clothing: does the isotopic response exists as a distinct phenomenon? J Eur Acad Dermatol Venereol. 2018;32:e336–e337. doi:10.1111/jdv.14900
  • Tatu AL, Nwabudike LC. The treatment options of male genital lichen sclerosus et atrophicus. In: Proceedings of the 14th National Congress of Urogynecology and the National Conference of the Romanian Association for the Study of Pain; 2017:262–264.
  • Niculet E, Chioncel V, Elisei AM, et al. Multifactorial expression of IL-6 with update on COVID-19 and the therapeutic strategies of its blockade (review). Exp Ther Med. 2021;21:263. doi:10.3892/etm.2021.9693
  • Elisei A, Nwabudike LC, Buzia OD, Miulescu M, Tatu AL. Statins. A review on structural perspectives, adverse reactions and relations with non-melanoma skin cancer. Rev Chim. 2018;69:2557–2562.
  • Tatu AL. Umbilicated blue-black lesion on the lateral thorax. J Cutan Med Surg. 2017;21:252. doi:10.1177/1203475417694859
  • Hoon DS, Banez M, Okun E, Morton DL, Irie RF. Modulation of human melanoma cells by interleukin-4 and in combination with gamma-interferon or alpha-tumor necrosis factor. Cancer Res. 1991;51:2002–2008.
  • Lee HL, Park MH, Song JK, et al. Tumor growth suppressive effect of IL-4 through P21-mediated activation of STAT6 in IL-4Rα overexpressed melanoma models. Oncotarget. 2016;7:23425–23438. doi:10.18632/oncotarget.8111
  • Whitehead RP, Unger JM, Goodwin JW, et al. Phase II trial of recombinant human interleukin-4 in patients with disseminated malignant melanoma: a southwest oncology group study. J Immunother. 1998;21(6):440–446. doi:10.1097/00002371-199811000-00006
  • Chong ST, Tan KM, Kok CYL, et al. IL13RA2 is differentially regulated in papillary thyroid carcinoma vs follicular thyroid carcinoma. J Clin Endocrinol Metab. 2019;104:5573–5584. doi:10.1210/jc.2019-00040
  • Okamoto H, Yoshimatsu Y, Tomizawa T, et al. Interleukin-13 receptor Α2 is a novel marker and potential therapeutic target for human melanoma. Sci Rep. 2019;9:1281. doi:10.1038/s41598-019-39018-3
  • Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12:99–106. doi:10.1038/nm1332
  • Castellani ML, Felaco P, Galzio RJ, et al. IL-31 a Th2 cytokine involved in immunity and inflammation. Int J Immunopathol Pharmacol. 2010;23:709–713. doi:10.1177/039463201002300304
  • Bodoor K, Al-Qarqaz F, Heis LA, et al. IL-33/13 axis and IL-4/31 axis play distinct roles in inflammatory process and itch in psoriasis and atopic dermatitis. Clin Cosmet Investig Dermatol. 2020;13:419–424. doi:10.2147/CCID.S257647
  • Junttila IS. Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. Front Immunol. 2018;9:888. doi:10.3389/fimmu.2018.00888
  • Bitton A, Avlas S, Reichman H, et al. A key role for IL-13 signaling via the type 2 IL-4 receptor in experimental atopic dermatitis. Sci Immunol. 2020;5:eaaw2938. doi:10.1126/sciimmunol.aaw2938
  • Bieber T. Interleukin-13: targeting an underestimated cytokine in atopic dermatitis. Allergy. 2020;75:54–62. doi:10.1111/all.13954
  • Wollenberg A, Blauvelt A, Guttman-Yassky E, et al. Tralokinumab for moderate-to-severe atopic dermatitis: results from two 52-week, randomized, double-blind, multicentre, placebo-controlled phase III trials (ECZTRA 1 and ECZTRA 2). Br J Dermatol. 2021;184:437–449. doi:10.1111/bjd.19574
  • TameezUd Din A, Malik I, Arshad D, TameezUd Din A. Dupilumab for atopic dermatitis: the silver bullet we have been searching for? Cureus. 2020;12:e7565. doi:10.7759/cureus.7565
  • Wozel G, Vitéz L, Pfeiffer C. Severe atopic dermatitis and leflunomide: first clinical experience and highlights of pertinent experimental data. Dermatol Online J. 2006;12:6.
  • Kim BS, Howell MD, Sun K, et al. Treatment of atopic dermatitis with ruxolitinib cream (JAK1/JAK2 inhibitor) or triamcinolone cream. J Allergy Clin Immunol. 2020;145:572–582. doi:10.1016/j.jaci.2019.08.042
  • Lee YS, Han S-B, Ham HJ, et al. IL-32γ suppressed atopic dermatitis through inhibition of MiR-205 expression via inactivation of nuclear factor-kappa B. J Allergy Clin Immunol. 2020;146:156–168. doi:10.1016/j.jaci.2019.12.905
  • IL-31 drug succeeds for Prurigo Nodularis — less itching and twice as many lesions resolved with investigational agent. MedpageToday. Available from: https://www.medpagetoday.com/dermatology/generaldermatology/84974. Accessed July 10, 2022.
  • Kabashima K, Irie H. Interleukin-31 as a clinical target for pruritus treatment. Front Med. 2021;8:638325. doi:10.3389/fmed.2021.638325
  • Asano Y. Recent advances in animal models of systemic sclerosis. J Dermatol. 2016;43:19–28. doi:10.1111/1346-8138.13185
  • Guggino G, Lo Pizzo M, Di Liberto D, et al. Interleukin-9 over-expression and T helper 9 polarization in systemic sclerosis patients. Clin Exp Immunol. 2017;190:208–216. doi:10.1111/cei.13009
  • Denton CP. Advances in pathogenesis and treatment of systemic sclerosis. Clin Med. 2015;15(6):s58–63. doi:10.7861/clinmedicine.15-6-s58
  • Sierra-Sepúlveda A, Esquinca-González A, Benavides-Suárez SA, et al. Systemic sclerosis pathogenesis and emerging therapies, beyond the fibroblast. BioMed Res Int. 2019;2019:4569826. doi:10.1155/2019/4569826
  • Asano Y. Systemic sclerosis. J Dermatol. 2018;45:128–138. doi:10.1111/1346-8138.14153
  • Altorok N, Wang Y, Kahaleh B. Endothelial dysfunction in systemic sclerosis. Curr Opin Rheumatol. 2014;26:615–620. doi:10.1097/BOR.0000000000000112
  • Matucci-Cerinic M, Steen V, Nash P, Hachulla E. The complexity of managing systemic sclerosis: screening and diagnosis. Rheumatol Oxf. 2009;48(3):iii8–13. doi:10.1093/rheumatology/ken482
  • Liakouli V, Elies J, El-Sherbiny YM, et al. Scleroderma fibroblasts suppress angiogenesis via tgf-β/caveolin-1 dependent secretion of pigment epithelium-derived factor. Ann Rheum Dis. 2018;77:431–440. doi:10.1136/annrheumdis-2017-212120
  • Atamas SP, White B. Interleukin 4 in systemic sclerosis: not just an increase. Clin Diagn Lab Immunol. 1999;6:658–659. doi:10.1128/CDLI.6.5.658-659.1999
  • Gasparini G, Cozzani E, Parodi A. Interleukin-4 and interleukin-13 as possible therapeutic targets in systemic sclerosis. Cytokine. 2020;125:154799. doi:10.1016/j.cyto.2019.154799
  • Cascio S, Medsger TA, Hawse WF, et al. 14-3-3z sequesters cytosolic T-Bet, upregulating IL-13 levels in TC2 and CD8+ lymphocytes from patients with scleroderma. J Allergy Clin Immunol. 2018;142:109–119.e6. doi:10.1016/j.jaci.2017.10.029
  • Manetti M, Pratesi S, Romano E, et al. Decreased circulating lymphatic endothelial progenitor cells in digital ulcer-complicated systemic sclerosis. Ann Rheum Dis. 2019;78:575–577. doi:10.1136/annrheumdis-2018-214240
  • Yamashita T, Lakota K, Taniguchi T, et al. An orally-active adiponectin receptor agonist mitigates cutaneous fibrosis, inflammation and microvascular pathology in a murine model of systemic sclerosis. Sci Rep. 2018;8:11843. doi:10.1038/s41598-018-29901-w
  • Yaseen B, Lopez H, Taki Z, et al. Interleukin-31 promotes pathogenic mechanisms underlying skin and lung fibrosis in scleroderma. Rheumatol Oxf. 2020;59:2625–2636. doi:10.1093/rheumatology/keaa195
  • Kuzumi A, Yoshizaki A, Matsuda KM, et al. Interleukin-31 promotes fibrosis and T helper 2 polarization in systemic sclerosis. Nat Commun. 2021;12:5947. doi:10.1038/s41467-021-26099-w
  • Wagner A, Köhm M, Nordin A, Svenungsson E, Pfeilschifter JM, Radeke HH. Increased serum levels of the IL-33 neutralizing SST2 in limited cutaneous systemic sclerosis. Scand J Immunol. 2015;82:269–274. doi:10.1111/sji.12317
  • Murdaca G, Greco M, Tonacci A, et al. IL-33/IL-31 axis in immune-mediated and allergic diseases. Int J Mol Sci. 2019;20:5856. doi:10.3390/ijms20235856
  • Simone D, Al Mossawi MH, Bowness P. Progress in our understanding of the pathogenesis of ankylosing spondylitis. Rheumatol Oxf. 2018;57:vi4–vi9. doi:10.1093/rheumatology/key001
  • Dong C, Fu T, Ji J, Li Z, Gu Z. The role of interleukin-4 in rheumatic diseases. Clin Exp Pharmacol Physiol. 2018;45:747–754. doi:10.1111/1440-1681.12946
  • Lin S, Qiu M, Chen J. IL-4 modulates macrophage polarization in ankylosing spondylitis. Cell Physiol Biochem. 2015;35:2213–2222. doi:10.1159/000374026
  • Wang J, Zhao Q, Wang G, et al. Circulating levels of Th1 and Th2 chemokines in patients with ankylosing spondylitis. Cytokine. 2016;81:10–14. doi:10.1016/j.cyto.2016.01.012
  • Li X, Lin T, Qi C, et al. Elevated serum level of IL-33 and SST2 in patients with ankylosing spondylitis: associated with disease activity and vascular endothelial growth factor. J Investig Med. 2013;61:848–851. doi:10.2310/JIM.0b013e31828deed2
  • Talabot-Ayer D, McKee T, Gindre P, et al. Distinct serum and synovial fluid interleukin (IL)-33 levels in rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Joint Bone Spine. 2012;79:32–37. doi:10.1016/j.jbspin.2011.02.011
  • Justiz Vaillant AA, Goyal A, Bansal P, Varacallo M. Systemic lupus erythematosus. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
  • Singh RR. IL-4 and many roads to lupus-like autoimmunity. Clin Immunol. 2003;108:73–79. doi:10.1016/S1521-6616(03)00145-1
  • Nakajima A, Hirose S, Yagita H, Okumura K. Roles of IL-4 and IL-12 in the development of lupus in NZB/W F1 mice. J Immunol. 1997;158:1466–1472.
  • Sugimoto K, Morimoto S, Kaneko H, et al. Decreased IL-4 producing CD4+ T cells in patients with active systemic lupus erythematosus-relation to IL-12R expression. Autoimmunity. 2002;35(6):381–387. doi:10.1080/0891693021000008535
  • Reséndiz-Mora A, Wong-Baeza C, Nevárez-Lechuga I, et al. Interleukin 4 deficiency limits the development of a lupus-like disease in mice triggered by phospholipids in a non-bilayer arrangement. Scand J Immunol. 2021;93(3):e13002. doi:10.1111/sji.13002
  • Morimoto S, Tokano Y, Kaneko H, Nozawa K, Amano H, Hashimoto H. The increased interleukin-13 in patients with systemic lupus erythematosus: relations to other Th1-, Th2-related cytokines and clinical findings. Autoimmunity. 2001;34:19–25. doi:10.3109/08916930108994122
  • Wang R, Lu Y-L, Huang H-T, et al. Association of interleukin 13 gene polymorphisms and plasma IL 13 level with risk of systemic lupus erythematosus. Cytokine. 2018;104:92–97. doi:10.1016/j.cyto.2017.09.034
  • Huang H-T, Chen J-M, Guo J, Lan Y, Wei Y-S. The association of interleukin-31 polymorphisms with interleukin-31 serum levels and risk of systemic lupus erythematosus. Rheumatol Int. 2016;36:799–805. doi:10.1007/s00296-016-3422-6
  • Yang Z, Liang Y, Xi W, Li C, Zhong R. Association of increased serum IL-33 levels with clinical and laboratory characteristics of systemic lupus erythematosus in Chinese population. Clin Exp Med. 2011;11(2):75–80. doi:10.1007/s10238-010-0115-4
  • Moreau A, Nicaise C, Awada A, Soyfoo MS. Soluble ST2 is increased in systemic lupus erythematous and is a potential marker of lupus nephritis. Clin Exp Rheumatol. 2021;2021:34128798.
  • Mohd Jaya FN, Liu Z, Chan GC. Early treatment of interleukin-33 can attenuate lupus development in young NZB/W F1 mice. Cells. 2020;9(11):2448. doi:10.3390/cells9112448
  • Firestein G, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46:183–196. doi:10.1016/j.immuni.2017.02.006
  • Finnegan A, Grusby MJ, Kaplan CD, et al. IL-4 and IL-12 regulate proteoglycan-induced arthritis through stat-dependent mechanisms. J Immunol Baltim. 2002;169:3345–3352. doi:10.4049/jimmunol.169.6.3345
  • Finnegan A, Mikecz K, Tao P, Glant TT. Proteoglycan (Aggrecan)-induced arthritis in BALB/c mice Is a Th1-type disease regulated by Th2 cytokines. J Immunol Baltim. 1999;163:5383–5390.
  • Martin-Martin LS, Giovannangeli F, Bizzi E, et al. An open randomized active-controlled clinical trial with low-dose SKA cytokines versus DMARDs evaluating low disease activity maintenance in patients with rheumatoid arthritis. Drug Des Devel Ther. 2017;11:985–994. doi:10.2147/DDDT.S118298
  • Shen H, Xia L, Lu J. Interleukin-4 in rheumatoid arthritis patients with interstitial lung disease: a pilot study. Indian J Med Res. 2013;138:919–921.
  • Tokayer A, Carsons SE, Chokshi B, Santiago-Schwarz F. High levels of interleukin 13 in rheumatoid arthritis sera are modulated by tumor necrosis factor antagonist therapy: association with dendritic cell growth activity. J Rheumatol. 2002;29:454–461.
  • Siloşi I, Boldeanu MV, Cojocaru M, et al.. The relationship of cytokines IL-13 and IL-17 with autoantibodies profile in early rheumatoid arthritis. J Immunol Res. 2016;3109135. doi:10.1155/2016/3109135
  • Duan L, Chen J, Gong F, Shi G. The role of IL-33 in rheumatic diseases. Clin Dev Immunol. 2013;924363. doi:10.1155/2013/924363
  • Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: a cytokine to remember. J Immunol Baltim. 2012;189:4213–4219. doi:10.4049/jimmunol.1202246
  • King E, O’Brien JT, Donaghy P, et al. Peripheral inflammation in prodromal Alzheimer’s and Lewy body dementias. J Neurol Neurosurg Psychiatry. 2018;89:339–345. doi:10.1136/jnnp-2017-317134
  • Derecki NC, Cardani AN, Yang CH, et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med. 2010;207:1067–1080. doi:10.1084/jem.20091419
  • Dionisio-Santos DA, Behrouzi A, Olschowka JA, O’Banion MK. Evaluating the effect of interleukin-4 in the 3xTg mouse model of Alzheimer’s disease. Front Neurosci. 2020;14:441. doi:10.3389/fnins.2020.00441
  • Brombacher TM, Nono JK, De Gouveia KS, et al. IL-13-mediated regulation of learning and memory. J Immunol Baltim. 2017;198:2681–2688. doi:10.4049/jimmunol.1601546
  • Mori S, Maher P, Conti B. Neuroimmunology of the interleukins 13 and 4. Brain Sci. 2016;6:E18. doi:10.3390/brainsci6020018
  • Brombacher TM, Berkiks I, Pillay S, Scibiorek M, Moses BO, Brombacher F. IL-4R alpha deficiency influences hippocampal-BDNF signaling pathway to impair reference memory. Sci Rep. 2020;10:16506. doi:10.1038/s41598-020-73574-3
  • Xiong Z, Thangavel R, Kempuraj D, Yang E, Zaheer S, Zaheer A. Alzheimer’s disease: evidence for the expression of interleukin-33 and its receptor ST2 in the brain. J Alzheimers Dis. 2014;40:297–308. doi:10.3233/JAD-132081
  • Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang H-R. Expression and function of IL-33/ST2 axis in the central nervous system under normal and diseased conditions. Front Immunol. 2018;9:2596. doi:10.3389/fimmu.2018.02596
  • Saresella M, Marventano I, Piancone F, et al. IL-33 and its decoy SST2 in patients with Alzheimer’s disease and mild cognitive impairment. J Neuroinflammation. 2020;17:174. doi:10.1186/s12974-020-01806-4
  • Sun Y, Wen Y, Wang L, et al. Therapeutic opportunities of interleukin-33 in the central nervous system. Front Immunol. 2021;12:654626. doi:10.3389/fimmu.2021.654626
  • Du L-X, Wang Y-Q, Hua G-Q, Mi W-L. IL-33/ST2 pathway as a rational therapeutic target for CNS diseases. Neuroscience. 2018;369:222–230. doi:10.1016/j.neuroscience.2017.11.028
  • Abd RachmanIsnadi MF, Chin VK, Abd Majid R, et al. Critical roles of IL-33/ST2 pathway in neurological disorders. Mediators Inflamm. 2018;2018:5346413. doi:10.1155/2018/5346413
  • Reverchon F, de Concini V, Larrigaldie V, et al. Hippocampal interleukin-33 mediates neuroinflammation-induced cognitive impairments. J Neuroinflammation. 2020;17:268. doi:10.1186/s12974-020-01939-6
  • Yan Z, Yang W, Wei H, et al. Dysregulation of the adaptive immune system in patients with early-stage Parkinson disease. Neurol Neuroimmunol Neuroinflammation. 2021;8:e1036. doi:10.1212/NXI.0000000000001036
  • Morrison BE, Marcondes MCG, Nomura DK, et al. Cutting edge: IL-13Rα1 expression in dopaminergic neurons contributes to their oxidative stress-mediated loss following chronic peripheral treatment with lipopolysaccharide. J Immunol Baltim. 2012;189:5498–5502. doi:10.4049/jimmunol.1102150
  • Bok E, Cho EJ, Chung ES, Shin W-H, Jin BK. Interleukin-4 contributes to degeneration of dopamine neurons in the lipopolysaccharide-treated substantia nigra in vivo. Exp Neurobiol. 2018;27:309–319. doi:10.5607/en.2018.27.4.309
  • Mori S, Sugama S, Nguyen W, et al. Lack of interleukin-13 receptor Α1 delays the loss of dopaminergic neurons during chronic stress. J Neuroinflammation. 2017;14:88. doi:10.1186/s12974-017-0862-1
  • Aguirre CA, Concetta Morale M, Peng Q, et al. Two single nucleotide polymorphisms in IL13 and IL13RA1 from individuals with idiopathic Parkinson’s disease increase cellular susceptibility to oxidative stress. Brain Behav Immun. 2020;88:920–924. doi:10.1016/j.bbi.2020.04.007
  • Rossi C, Cusimano M, Zambito M, et al. Interleukin 4 modulates microglia homeostasis and attenuates the early slowly progressive phase of amyotrophic lateral sclerosis. Cell Death Dis. 2018;9:250. doi:10.1038/s41419-018-0288-4
  • Korhonen P, Pollari E, Kanninen KM, et al. Long-term interleukin-33 treatment delays disease onset and alleviates astrocytic activation in a transgenic mouse model of amyotrophic lateral sclerosis. IBRO Rep. 2019;6:74–86. doi:10.1016/j.ibror.2019.01.005
  • Falcone M, Rajan AJ, Bloom BR, Brosnan CF. A critical role for IL-4 in regulating disease severity in experimental allergic encephalomyelitis as demonstrated in IL-4-deficient C57BL/6 mice and BALB/c mice. J Immunol Baltim. 1998;160:4822–4830.
  • Ponomarev ED, Maresz K, Tan Y, Dittel BN. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci. 2007;27:10714–10721. doi:10.1523/JNEUROSCI.1922-07.2007
  • Ghezzi L, Cantoni C, Cignarella F, et al. T cells producing GM-CSF and IL-13 are enriched in the cerebrospinal fluid of relapsing MS patients. Mult Scler. 2020;26:1172–1186. doi:10.1177/1352458519852092
  • Allan D, Fairlie-Clarke KJ, Elliott C, et al. Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system. Acta Neuropathol Commun. 2016;4:75. doi:10.1186/s40478-016-0344-1
  • Ygberg S, Fowler Å, Wickström R. Age-related changes in the inflammatory responses to viral infections in the central nervous system during childhood. Pediatr Res. 2022;91(1):204–208. doi:10.1038/s41390-021-01423-8
  • Silva HM, Vinaud MC, de Lino RS. Experimental neurocysticercosis: absence of IL-4 induces lower encephalitis. Arq Neuropsiquiatr. 2017;75:96–102. doi:10.1590/0004-282x20160194
  • Peng H, Sun R, Zhang Q, et al. Interleukin 33 mediates type 2 immunity and inflammation in the central nervous system of mice infected with angiostrongylus cantonensis. J Infect Dis. 2013;207:860–869. doi:10.1093/infdis/jis682
  • Palomo J, Reverchon F, Piotet J, et al. Critical role of IL-33 receptor ST2 in experimental cerebral malaria development. Eur J Immunol. 2015;45:1354–1365. doi:10.1002/eji.201445206
  • Franca RFO, Costa RS, Silva JR, et al. IL-33 signaling is essential to attenuate viral-induced encephalitis development by downregulating INOS expression in the central nervous system. J Neuroinflammation. 2016;13:159. doi:10.1186/s12974-016-0628-1
  • Reverchon F, Mortaud S, Sivoyon M, et al. IL-33 receptor ST2 regulates the cognitive impairments associated with experimental cerebral malaria. PLoS Pathog. 2017;13:e1006322.
  • Kolosowska N, Keuters MH, Wojciechowski S, et al. Peripheral administration of IL-13 induces anti-inflammatory microglial/macrophage responses and provides neuroprotection in ischemic stroke. Neurotherapeutics. 2019;16:1304–1319. doi:10.1007/s13311-019-00761-0
  • Perego C, Fumagalli S, Miteva K, Kallikourdis M, De Simoni M-G. Combined genetic deletion of IL (Interleukin)-4, IL-5, IL-9, and IL-13 does not affect ischemic brain injury in mice. Stroke. 2019;50:2207–2215. doi:10.1161/STROKEAHA.119.025196
  • Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol. 2013;4:18. doi:10.3389/fneur.2013.00018
  • Pu H, Ma C, Zhao Y, et al. Intranasal delivery of interleukin-4 attenuates chronic cognitive deficits via beneficial microglial responses in experimental traumatic brain injury. J Cereb Blood Flow Metab. 2021;41(11):2870–2886. doi:10.1177/0271678X211028680
  • Miao W, Zhao Y, Huang Y, et al. IL-13 ameliorates neuroinflammation and promotes functional recovery after traumatic brain injury. J Immunol Baltim. 2020;204:1486–1498. doi:10.4049/jimmunol.1900909
  • Miao Y, Zhang Z-X, Feng X, Sun W-M. IL-33 as a novel serum prognostic marker of intracerebral hemorrhage. Oxid Med Cell Longev. 2021;2021:5597790. doi:10.1155/2021/5597790
  • de Toscano ECB, Lessa JMK, de Oliveira GN, et al. Peripheral levels of SST2 are increased in patients with temporal lobe epilepsy: additional evidence of low-grade inflammation. Epilepsy Behav. 2020;112:107351. doi:10.1016/j.yebeh.2020.107351
  • Gao Y, Luo C, Yao Y, et al. IL-33 alleviated brain damage via anti-apoptosis, endoplasmic reticulum stress, and inflammation after epilepsy. Front Neurosci. 2020;14:898. doi:10.3389/fnins.2020.00898
  • Ethemoglu O, Calık M, Koyuncu I, et al. Interleukin-33 and oxidative stress in epilepsy patients. Epilepsy Res. 2021;176:106738. doi:10.1016/j.eplepsyres.2021.106738
  • Takamori A, Nambu A, Sato K, et al. IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Sci Rep. 2018;8:6639. doi:10.1038/s41598-018-25094-4
  • Nemmer JM, Kuchner M, Datsi A, et al. Interleukin-31 signaling bridges the gap between immune cells, the nervous system and epithelial tissues. Front Med. 2021;8:639097. doi:10.3389/fmed.2021.639097
  • De Boeck A, Ahn BY, D’Mello C, et al. Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun. 2020;11:4997. doi:10.1038/s41467-020-18569-4
  • Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging. 2020;12(2):1685–1703. doi:10.18632/aging.102707
  • Thürmann L, Herberth G, Rolle-Kampczyk U, et al. Elevated gestational IL-13 during fetal development is associated with hyperactivity and inattention in eight-year-old children. Front Immunol. 2019;10:1658. doi:10.3389/fimmu.2019.01658
  • Dohi E, Choi EY, Rose IVL, et al. Behavioral changes in mice lacking interleukin-33. eNeuro. 2017;4(6):ENEURO.0147–17.2017. doi:10.1523/ENEURO.0147-17.2017
  • Vainchtein ID, Chin G, Cho FS, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 2018;359:1269–1273. doi:10.1126/science.aal3589
  • Pandolfo G, Genovese G, Casciaro M, et al. IL-33 in mental disorders. Medicina. 2021;57(4):315. doi:10.3390/medicina57040315
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:10.1136/bmj.n71