87
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Associated of the Risk of IVIG Resistance in Kawasaki Disease with ZNF112 Gene and ZNF180 Gene in a Southern Chinese Population

, , , , , , , , , & show all
Pages 5053-5062 | Published online: 02 Sep 2022

References

  • Newburger JW, Takahashi M, Gerber MA, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 2004;110(17):2747–2771. doi:10.1161/01.CIR.0000145143.19711.78
  • Rowley AH, Shulman ST. The epidemiology and pathogenesis of Kawasaki disease. Front Pediatr. 2018;6:374. doi:10.3389/fped.2018.00374
  • Singh S, Vignesh P, Burgner D. The epidemiology of Kawasaki disease: a global update. Arch Dis Child. 2015;100(11):1084–1088. doi:10.1136/archdischild-2014-307536
  • McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki Disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017;135(17):e927–e999. doi:10.1161/CIR.0000000000000484
  • Phuong LK, Curtis N, Gowdie P, Akikusa J, Burgner D. Treatment options for resistant Kawasaki disease. Paediatr Drugs. 2018;20(1):59–80. doi:10.1007/s40272-017-0269-6
  • Burns JC, Glodé MP. Kawasaki syndrome. Lancet. 2004;364(9433):533–544. doi:10.1016/S0140-6736(04)16814-1
  • Sundel RP. Kawasaki disease. Rheum Dis Clin North Am. 2015;41(1):63–73. doi:10.1016/j.rdc.2014.09.010
  • Duignan S, Doyle SL, McMahon CJ. Refractory Kawasaki disease: diagnostic and management challenges. Pediatric Health Med Ther. 2019;10:131–139. doi:10.2147/PHMT.S165935
  • Zhang RL, Lo HH, Lei C, Ip N, Chen J, Law BY. Current pharmacological intervention and development of targeting IVIG resistance in Kawasaki disease. Curr Opin Pharmacol. 2020;54:72–81. doi:10.1016/j.coph.2020.08.008
  • Ahn JG, Bae Y, Shin D, Nam J, Kim KY, Kim DS. HMGB1 gene polymorphism is associated with coronary artery lesions and intravenous immunoglobulin resistance in Kawasaki disease. Rheumatology. 2019;58(5):770–775. doi:10.1093/rheumatology/key356
  • Kim JJ, Yun SW, Yu JJ, et al. Identification of SAMD9L as a susceptibility locus for intravenous immunoglobulin resistance in Kawasaki disease by genome-wide association analysis. Pharmacogenomics J. 2020;20(1):80–86. doi:10.1038/s41397-019-0085-1
  • Garcia-Pavon S, Yamazaki-Nakashimada MA, Baez M, Borjas-Aguilar KL, Murata C. Kawasaki disease complicated with macrophage activation syndrome: a systematic review. J Pediatr Hematol Oncol. 2017;39(6):445–451. doi:10.1097/MPH.0000000000000872
  • Xie T, Wang Y, Fu S, et al. Predictors for intravenous immunoglobulin resistance and coronary artery lesions in Kawasaki disease. Pediatr Rheumatol Online J. 2017;15(1):17. doi:10.1186/s12969-017-0149-1
  • Nozawa T, Imagawa T, Ito S. Coronary-artery aneurysm in tocilizumab-treated children with Kawasaki’s disease. N Engl J Med. 2017;377(19):1894–1896. doi:10.1056/NEJMc1709609
  • Okada M, Wang CY, Hwang DW, et al. Transcriptional control of cardiac allograft vasculopathy by early growth response gene-1 (Egr-1). Circ Res. 2002;91(2):135–142. doi:10.1161/01.RES.0000027815.75000.33
  • Khachigian LM, Santiago FS, Rafty LA, et al. GC factor 2 represses platelet-derived growth factor A-chain gene transcription and is itself induced by arterial injury. Circ Res. 1999;84(11):1258–1267. doi:10.1161/01.RES.84.11.1258
  • Rafty LA, Khachigian LM. Zinc finger transcription factors mediate high constitutive platelet-derived growth factor-B expression in smooth muscle cells derived from aortae of newborn rats. J Biol Chem. 1998;273(10):5758–5764. doi:10.1074/jbc.273.10.5758
  • Cattaruzza M, Nogoy N, Wojtowicz A, Hecker M. Zinc finger motif-1 antagonizes PDGF-BB-induced growth and dedifferentiation of vascular smooth muscle cells. FASEB J. 2012;26(12):4864–4875. doi:10.1096/fj.12-210302
  • Song WM, Agrawal P, Von Itter R, et al. Network models of primary melanoma microenvironments identify key melanoma regulators underlying prognosis. Nat Commun. 2021;12(1):1214. doi:10.1038/s41467-021-21457-0
  • Kuo HC, Wong HS, Chang WP, et al. Prediction for intravenous immunoglobulin resistance by using weighted genetic risk score identified from genome-wide association study in Kawasaki disease. Circ Cardiovasc Genet. 2017;10(5). doi:10.1161/CIRCGENETICS.116.001625.
  • Singh S, Jindal AK, Pilania RK. Diagnosis of Kawasaki disease. Int J Rheum Dis. 2018;21(1):36–44. doi:10.1111/1756-185X.13224
  • Franco A, Touma R, Song Y, et al. Specificity of regulatory T cells that modulate vascular inflammation. Autoimmunity. 2014;47(2):95–104. doi:10.3109/08916934.2013.860524
  • Shrestha S, Wiener H, Shendre A, et al. Role of activating FcgammaR gene polymorphisms in Kawasaki disease susceptibility and intravenous immunoglobulin response. Circ Cardiovasc Genet. 2012;5(3):309–316. doi:10.1161/CIRCGENETICS.111.962464
  • Amano Y, Akazawa Y, Yasuda J, et al. A low-frequency IL4R locus variant in Japanese patients with intravenous immunoglobulin therapy-unresponsive Kawasaki disease. Pediatr Rheumatol Online J. 2019;17(1):34. doi:10.1186/s12969-019-0337-2
  • Uehara R, Belay ED, Maddox RA, et al. Analysis of potential risk factors associated with nonresponse to initial intravenous immunoglobulin treatment among Kawasaki disease patients in Japan. Pediatr Infect Dis J. 2008;27(2):155–160. doi:10.1097/INF.0b013e31815922b5
  • Weiss RJ, Spahn PN, Toledo AG, et al. ZNF263 is a transcriptional regulator of heparin and heparan sulfate biosynthesis. Proc Natl Acad Sci USA. 2020;117(17):9311–9317. doi:10.1073/pnas.1920880117
  • Zhang W, Zhangyuan G, Wang F, et al. The zinc finger protein Miz1 suppresses liver tumorigenesis by restricting hepatocyte-driven macrophage activation and inflammation. Immunity. 2021;54(6):1168–1185 e1168. doi:10.1016/j.immuni.2021.04.027
  • Lv L, Zhang J, Wang P, Meng Q, Liang W, Zhang L. Zinc finger protein 191 deficiency attenuates vascular smooth muscle cell proliferation, migration, and intimal hyperplasia after endovascular arterial injury. J Vasc Surg. 2014;59(2):500–509. doi:10.1016/j.jvs.2013.03.049
  • Cui S, Wang L, Zhao H, Lu F, Wang W, Yuan Z. Benzyl butyl phthalate (BBP) triggers the migration and invasion of hemangioma cells via upregulation of Zeb1. Toxicol In Vitro. 2019;60:323–329. doi:10.1016/j.tiv.2019.06.013
  • Ma L, Chandel N, Ermel R, et al. Multiple independent mechanisms link gene polymorphisms in the region of ZEB2 with risk of coronary artery disease. Atherosclerosis. 2020;311:20–29. doi:10.1016/j.atherosclerosis.2020.08.013
  • Bresson V, Bonello B, Rousset-Rouviere C, et al. Maladie de Kawasaki chez le grand enfant et l’adulte jeune: expe´rience marseillaise sur 10 ans. Arch Pediatr. 2011;18(7):731–736. French. doi:10.1016/j.arcped.2011.04.014
  • Cai Z, Zuo R, Liu Y. Characteristics of Kawasaki disease in older children. Clin Pediatr. 2011;50(10):952–956. doi:10.1177/0009922811409027
  • Fairfax BP, Humburg P, Makino S, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science. 2014;343(6175):1246949. doi:10.1126/science.1246949
  • Fairfax BP, Makino S, Radhakrishnan J, et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet. 2012;44(5):502–510. doi:10.1038/ng.2205
  • Wang Y, Xu Y, Huang P, et al. Homozygous of MRP4 gene rs1751034 C allele is related to increased risk of intravenous immunoglobulin resistance in Kawasaki disease. Front Genet. 2021;12:510350. doi:10.3389/fgene.2021.510350
  • Wang Z, Xu Y, Zhou H, et al. Association between P2RY12 gene polymorphisms and IVIG resistance in Kawasaki patients. Cardiovasc Ther. 2020;2020:3568608. doi:10.1155/2020/3568608
  • Yu H, Liu F, Chen K, et al. The EIF2AK4/rs4594236 AG/GG genotype is a hazard factor of immunoglobulin therapy resistance in southern Chinese Kawasaki disease patients. Front Genet. 2022;13:868159. doi:10.3389/fgene.2022.868159