114
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Platelets, Macrophages, and Thromboinflammation in Chagas Disease

& ORCID Icon
Pages 5689-5706 | Received 02 Jul 2022, Accepted 24 Aug 2022, Published online: 04 Oct 2022

References

  • World Health Organization. Chagas disease (also known as American trypanosomiasis) key facts. Geneva, Switzerland: UNDP/World Bank/WHO; 2022. Available from: https://wwwwhoint/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis). Accessed October 8, 2022.
  • World Health Organization. Chagas disease control and elimination. Report of the secretariat. Geneva, Switzerland: UNDP/World Bank/WHO; 2019. Available from: http://apps.who.int/gb/ebwha/pdf_files/WHA63/A63_17-en.pdf. Accessed October 8, 2022.
  • Coura JR. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions - A comprehensive review. Mem Inst Oswaldo Cruz. 2015;110:277–282. doi:10.1590/0074-0276140362
  • Antunes D, Marins-Dos-Santos A, Ramos MT, et al. Oral route driven acute Trypanosoma cruzi infection unravels an IL-6 dependent hemostatic derangement. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.01073
  • Antinori S, Galimberti L, Bianco R, Grande R, Galli M, Corbellino M. Chagas disease in Europe: a review for the internist in the globalized world. Eur J Intern Med. 2017;43:6–15. doi:10.1016/j.ejim.2017.05.001
  • Bern C, Kjos S, Yabsley MJ, Montgomery SP. Trypanosoma cruzi and Chagas’ disease in the United States. Clin Microbiol Rev. 2011;24:655–681. doi:10.1128/CMR.00005-11
  • Bartsch SM, Avelis CM, Asti L, et al. The economic value of identifying and treating Chagas disease patients earlier and the impact on Trypanosoma cruzi transmission. PLoS Negl Trop Dis. 2018;12:e0006809. doi:10.1371/journal.pntd.0006809
  • Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM. Pathology and pathogenesis of Chagas heart disease. Annual Rev Pathol. 2020;14:421–447. doi:10.1146/annurev-pathol-020117-043711
  • Meymandi S, Hernandez S, Park S, Sanchez DR, Forsyth C. Treatment of Chagas disease in the United States. Curr Treat Options Infect Dis. 2018;10:373–388. doi:10.1007/s40506-018-0170-z
  • Sales Junior PA, Molina I, Fonseca Murta SM, et al. Experimental and clinical treatment of Chagas disease: a review. Am J Trop Med Hyg. 2017;97:1289–1303. doi:10.4269/ajtmh.16-0761
  • Bianchi F, Cucunuba Z, Guhl F, et al. Follow-up of an asymptomatic Chagas disease population of children after treatment with nifurtimox (Lampit) in a sylvatic endemic transmission area of Colombia. PLoS Negl Trop Dis. 2015;9:e0003465. doi:10.1371/journal.pntd.0003465
  • de Andrade AL, Zicker F, de Oliveira RM, et al. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet. 1996;348:1407–1413. doi:10.1016/S0140-6736(96)04128-1
  • Coura JR. Current prospects of specific treatment of Chagas’ disease. Bol Chil Parasitol. 1996;51:69–75.
  • Bermudez J, Davies C, Simonazzi A, Real JP, Palma S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop. 2016;156:1–16. doi:10.1016/j.actatropica.2015.12.017
  • Morillo CA, Marin-Neto JA, Avezum A, et al. Randomized trial of benznidazole for chronic Chagas cardiomyopathy. N Engl J Med. 2015;373:1295–1306. doi:10.1056/NEJMoa1507574
  • Mills RM. Chagas disease: epidemiology and barriers to treatment. Am J Med. 2020;133:1262–1265. doi:10.1016/j.amjmed.2020.05.022
  • Kratz JM, Goncalves KR, Romera LM, et al. The translational challenge in Chagas disease drug development. Mem Inst Oswaldo Cruz. 2022;117:e200501. doi:10.1590/0074-02760200501
  • Pinazo MJ, Torrico F, Gascón J. Pathogenesis of Chagas disease in humans. In: Singh SK, editor. Human Emerging and Re‐emerging Infections: Viral and Parasitic Infections. Vol. 1. Wiley Online Library; 2015:349–369.
  • Nunes MCP, Beaton A, Acquatella H, et al. Chagas cardiomyopathy: an update of current clinical knowledge and management: a scientific statement from the American Heart Association. Circulation. 2018;138:e169–e209. doi:10.1161/CIR.0000000000000599
  • Fonseca R, Salgado RM, Borges da Silva H, Nascimento RS, D’Império-Lima MR, Alvarez JM. Programmed cell death protein 1–PDL1 interaction prevents heart damage in chronic Trypanosoma cruzi infection. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.00997
  • Dhiman M, Garg NJ, Vieira LQ. P47phox−/− mice are compromised in expansion and activation of CD8+ T cells and susceptible to Trypanosoma cruzi infection. PLoS Pathog. 2014;10:e1004516. doi:10.1371/journal.ppat.1004516
  • Garg N. Mitochondrial disorders in chagasic cardiomyopathy. Front Biosci. 2005;10:1341–1354. doi:10.2741/1624
  • Zacks MA, Wen JJ, Vyatkina G, Bhatia V, Garg N. An overview of chagasic cardiomyopathy: pathogenic importance of oxidative stress. An Acad Bras Cienc. 2005;77:695–715. doi:10.1590/S0001-37652005000400009
  • Wen JJ, Garg NJ. Mitochondrial generation of reactive oxygen species is enhanced at the Q(o) site of the complex III in the myocardium of Trypanosoma cruzi-infected mice: beneficial effects of an antioxidant. J Bioenerg Biomembr. 2008;40:587–598. doi:10.1007/s10863-008-9184-4
  • Wen JJ, Garg NJ. Mitochondrial complex III defects contribute to inefficient respiration and ATP synthesis in the myocardium of Trypanosoma cruzi-infected mice. Antioxid Redox Signal. 2010;12:27–37. doi:10.1089/ars.2008.2418
  • Lopez M, Tanowitz HB, Garg NJ. Pathogenesis of chronic Chagas disease: macrophages, mitochondria, and oxidative stress. Curr Clin Microbiol Rep. 2018;5:45–54. doi:10.1007/s40588-018-0081-2
  • Wen JJ, Dhiman M, Whorton EB, Garg NJ. Tissue-specific oxidative imbalance and mitochondrial dysfunction during Trypanosoma cruzi infection in mice. Microbes Infect. 2008;10:1201–1209. doi:10.1016/j.micinf.2008.06.013
  • Wen -J-J, Vyatkina G, Garg NJ. Oxidative damage during chagasic cardiomyopathy development: role of mitochondrial oxidant release and inefficient antioxidant defense. Free Radic Biol Med. 2004;37:1821–1833. doi:10.1016/j.freeradbiomed.2004.08.018
  • Dhiman M, Zago MP, Nunez S, Nunez-Burgio F, Garg NJ. Cardiac oxidized antigens are targets of immune recognition by antibodies and potential molecular determinants in Chagas disease pathogenesis. PLoS One. 2012;7:e28449. doi:10.1371/journal.pone.0028449
  • Paiva CN, Medei E, Bozza MT, Gubbels M-J. ROS and Trypanosoma cruzi: fuel to infection, poison to the heart. PLoS Pathog. 2018;14:e1006928. doi:10.1371/journal.ppat.1006928
  • Wen -J-J, Yachelini PC, Sembaj A, Manzur RE, Garg NJ. Increased oxidative stress is correlated with mitochondrial dysfunction in chagasic patients. Free Rad Biol Med. 2006;41:270–276. doi:10.1016/j.freeradbiomed.2006.04.009
  • de Oliveira TB, Pedrosa RC, Filho DW. Oxidative stress in chronic cardiopathy associated with Chagas disease. Int J Cardiol. 2007;116:357–363. doi:10.1016/j.ijcard.2006.04.046
  • Dhiman M, Nakayasu ES, Madaiah YH, et al. Enhanced nitrosative stress during Trypanosoma cruzi infection causes nitrotyrosine modification of host proteins: implications in Chagas’ disease. Am J Pathol. 2008;173:728–740. doi:10.2353/ajpath.2008.080047
  • Dhiman M, Estrada-Franco JG, Pando JM, et al. Increased myeloperoxidase activity and protein nitration are indicators of inflammation in patients with Chagas’ disease. Clin Vaccine Immunol. 2009;16:660–666. doi:10.1128/CVI.00019-09
  • Wen -J-J, Bhatia V, Popov VL, Garg NJ. Phenyl-alpha-tert-butyl nitrone reverses mitochondrial decay in acute Chagas disease. Am J Pathol. 2006;169:1953–1964. doi:10.2353/ajpath.2006.060475
  • Perez-Fuentes R, Guegan JF, Barnabe C, et al. Severity of chronic Chagas disease is associated with cytokine/antioxidant imbalance in chronically infected individuals. Int J Parasitol. 2003;33:293–299. doi:10.1016/S0020-7519(02)00283-7
  • Wen JJ, Porter C, Garg NJ. Inhibition of NFE2L2-Antioxidant Response Element pathway by mitochondrial reactive oxygen species contributes to development of cardiomyopathy and left ventricular dysfunction in Chagas disease. Antioxid Redox Signal. 2017;27:550–566. doi:10.1089/ars.2016.6831
  • Wan X, Wen JJ, Koo SJ, Liang LY, Garg NJ. SIRT1-PGC1alpha-NFkappaB pathway of oxidative and inflammatory stress during Trypanosoma cruzi infection: benefits of SIRT1-targeted therapy in improving heart function in Chagas disease. PLoS Pathog. 2016;12:e1005954. doi:10.1371/journal.ppat.1005954
  • Dhiman M, Wan -X-X, Vargas G, Garg NJ, Garg NJ. MnSOD tg mice control myocardial inflammatory and oxidative stress and remodeling responses elicited in chronic Chagas disease. J Am Heart Assoc. 2013;2:e000302. doi:10.1161/JAHA.113.000302
  • Gupta S, Bhatia V, Wen -J-J, Wu Y, Huang M-H, Garg NJ. Trypanosoma cruzi infection disturbs mitochondrial membrane potential and ROS production rate in cardiomyocytes. Free Radic Biol Med. 2009;47:1414–1421. doi:10.1016/j.freeradbiomed.2009.08.008
  • Ba X, Gupta S, Davidson M, Garg NJ. Trypanosoma cruzi induces the reactive oxygen species-PARP-1-RelA pathway for up-regulation of cytokine expression in cardiomyocytes. J Biol Chem. 2010;285:11596–11606.
  • Wen -J-J, Gupta S, Guan Z, et al. Phenyl-alpha-tert-butyl-nitrone and benzonidazole treatment controlled the mitochondrial oxidative stress and evolution of cardiomyopathy in chronic chagasic rats. J Am Coll Cardiol. 2010;55:2499–2508. doi:10.1016/j.jacc.2010.02.030
  • Barroso A, Gualdrón-López M, Esper L, et al. The Aryl Hydrocarbon Receptor modulates production of cytokines and reactive oxygen species and development of myocarditis during Trypanosoma cruzi infection. Infect Immun. 2016;84:3071–3082. doi:10.1128/IAI.00575-16
  • Santos ES, Silva DKC, Dos Reis B, et al. Immunomodulation for the treatment of chronic Chagas disease cardiomyopathy: a new approach to an old enemy. Front Cell Infect Microbiol. 2021;11:765879.
  • Pereira AB, Alvarenga H, Pereira RS, Barbosa MT. Stroke prevalence among the elderly in Vassouras, Rio de Janeiro State, Brazil, according to data from the family health program. Cad Saude Publica. 2009;25:1929–1936. doi:10.1590/S0102-311X2009000900007
  • Paixao LC, Ribeiro AL, Valacio RA, Teixeira AL. Chagas disease: independent risk factor for stroke. Stroke. 2009;40:3691–3694. doi:10.1161/STROKEAHA.109.560854
  • Oliveira-Filho J, Viana LC, Vieira-de-Melo RM, et al. Chagas disease is an independent risk factor for stroke: baseline characteristics of a Chagas Disease cohort. Stroke. 2005;36:2015–2017. doi:10.1161/01.STR.0000177866.13451.e4
  • Leon-Sarmiento FE, Mendoza E, Torres-Hillera M, et al. Trypanosoma cruzi-associated cerebrovascular disease: a case-control study in Eastern Colombia. J Neurol Sci. 2004;217:61–64. doi:10.1016/j.jns.2003.08.015
  • Carod-Artal FJ, Gascon J. Chagas disease and stroke. Lancet Neurol. 2010;9:533–542. doi:10.1016/S1474-4422(10)70042-9
  • Rasche H. Hemostasis and thrombosis: an overview. Eur Heart J Supplements. 2001;3:Q3–Q7. doi:10.1016/S1520-765X(01)90034-3
  • George JN. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Lippincott Williams & Wilkins; 2006.
  • Bonar RA, Lippi G, Favaloro EJ. Overview of Hemostasis and thrombosis and contribution of laboratory testing to diagnosis and management of hemostasis and thrombosis disorders. Methods Mol Biol. 2017;1646:3–27.
  • Bizzozero G. Su di un nuovo elemento morfologico del sangue dei mammiferi e sulla sua importanza nella trombosi e nella coagulazione. [On a new morphological element of mammalian blood and its importance in thrombosis and coagulation]. L’Osservatore Gazz Clin. 1881;17:785–787. Italian.
  • Swieringa F, Spronk HMH, Heemskerk JWM, van der Meijden PEJ. Integrating platelet and coagulation activation in fibrin clot formation. Res Pract Thromb Haemost. 2018;2:450–460. doi:10.1002/rth2.12107
  • Kwaan H, Lisman T, Medcalf RL. Fibrinolysis: biochemistry, clinical aspects, and therapeutic potential. Semin Thromb Hemost. 2017;43:113–114. doi:10.1055/s-0036-1598000
  • Samuel J, Oliveira M, Correa De Araujo RR, Navarro MA, Muccillo G. Cardiac thrombosis and thromboembolism in chronic Chagas’ heart disease. Am J Cardiol. 1983;52:147–151. doi:10.1016/0002-9149(83)90085-1
  • Arteaga Fernández E, Barreto ACP, Ianni BM, et al. Cardiac thrombosis and embolism in patients who died of chronic chagasic cardiopathy/Cardiac thrombosis and embolism in patients who had died with chronic chagasic cardiopathy. Arq Bras Cardiol. 1989;52:189–192.
  • Herrera RN, Diaz E, Perez R, et al. Estado protrombótico en estadios tempranos de la enfermedad de Chagas crónica. [The prothrombotic state in early stages of chronic chagas’ disease]. Rev Esp Cardiol. 2003;56:377–382. Spanish. doi:10.1016/S0300-8932(03)76881-X
  • Cerqueira-Silva T, Goncalves BM, Pereira CB, et al. Chagas disease is an independent predictor of stroke and death in a cohort of heart failure patients. Int J Stroke. 2022;17:180–188. doi:10.1177/17474930211006284
  • Nunes MC, Kreuser LJ, Ribeiro AL, et al. Prevalence and risk factors of embolic cerebrovascular events associated with Chagas heart disease. Glob Heart. 2015;10:151–157. doi:10.1016/j.gheart.2015.07.006
  • Herrera RN, Berman SG, Luciardi HL. Evidence of a prothrombotic state in early stages of chronic Chagas’ disease. Arch Cardiol Mex. 2004;74:259–261.
  • Melo LM, Souza GE, Valim LR, et al. Study of pro-thrombotic and pro-inflammatory factors in Chagas cardiomyopathy. Arq Bras Cardiol. 2010;95:655–662. doi:10.1590/S0066-782X2010005000146
  • Echeverria LE, Rojas LZ, Gomez-Ochoa SA. Coagulation disorders in Chagas disease: a pathophysiological systematic review and meta-analysis. Thromb Res. 2021;201:73–83. doi:10.1016/j.thromres.2021.02.025
  • Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther. 2010;28:e72–91. doi:10.1111/j.1755-5922.2010.00171.x
  • Pengue C, Cesar G, Alvarez MG, et al. Impaired frequencies and function of platelets and tissue remodeling in chronic Chagas disease. PLoS One. 2019;14:e0218260. doi:10.1371/journal.pone.0218260
  • Pinazo MJ, Posada Ede J, Izquierdo L, et al. Altered hypercoagulability factors in patients with chronic Chagas disease: potential biomarkers of therapeutic response. PLoS Negl Trop Dis. 2016;10:e0004269. doi:10.1371/journal.pntd.0004269
  • Laucella SA, Segura EL, Riarte A, Sosa ES. Soluble platelet selectin (sP-selectin) and soluble vascular cell adhesion molecule-1 (sVCAM-1) decrease during therapy with benznidazole in children with indeterminate form of Chagas’ disease. Clin Exp Immunol. 1999;118:423–427. doi:10.1046/j.1365-2249.1999.01070.x
  • Panicker SR, Mehta-D’souza P, Zhang N, Klopocki AG, Shao B, McEver RP. Circulating soluble P-selectin must dimerize to promote inflammation and coagulation in mice. Blood. 2017;130:181–191. doi:10.1182/blood-2017-02-770479
  • Tanowitz HB, Burns ER, Sinha AK, et al. Enhanced platelet adherence and aggregation in Chagas’ disease: a potential pathogenic mechanism for cardiomyopathy. Am J Trop Med Hyg. 1990;43:274–281. doi:10.4269/ajtmh.1990.43.274
  • Ashton AW, Mukherjee S, Nagajyothi FN, et al. Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection. J Exp Med. 2007;204:929–940. doi:10.1084/jem.20062432
  • Tanowitz HB, Huang H, Jelicks LA, et al. Role of endothelin 1 in the pathogenesis of chronic chagasic heart disease. Infect Immun. 2005;73:2496–2503.
  • Woudstra L, Juffermans LJM, van Rossum AC, Niessen HWM, Krijnen PAJ. Infectious myocarditis: the role of the cardiac vasculature. Heart Fail Rev. 2018;23:583–595. doi:10.1007/s10741-018-9688-x
  • Frasch AC. Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol Today. 2000;16:282–286. doi:10.1016/S0169-4758(00)01698-7
  • Dias WB, Fajardo FD, Graca-Souza AV, et al. Endothelial cell signalling induced by trans-sialidase from Trypanosoma cruzi. Cell Microbiol. 2008;10:88–99. doi:10.1111/j.1462-5822.2007.01017.x
  • Tribulatti MV, Mucci J, Van Rooijen N, Leguizamon MS, Campetella O. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas’ disease by reducing the platelet sialic acid contents. Infect Immun. 2005;73:201–207. doi:10.1128/IAI.73.1.201-207.2005
  • Berra HH, Piaggio E, Revelli SS, Luquita A. Blood viscosity changes in experimentally Trypanosoma cruzi-infected rats. Clin Hemorheol Microcirc. 2005;32:175–182.
  • Byrnes JR, Wolberg AS. Red blood cells in thrombosis. Blood. 2017;130:1795–1799. doi:10.1182/blood-2017-03-745349
  • Zelaya H, Rothmeier AS, Ruf W. Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost. 2018;16:1941–1952. doi:10.1111/jth.14246
  • Ferreira RC, Ianni BM, Abel LC, et al. Increased plasma levels of tumor necrosis factor-alpha in asymptomatic/”indeterminate” and Chagas disease cardiomyopathy patients. Mem Inst Oswaldo Cruz. 2003;98:407–411. doi:10.1590/S0074-02762003000300021
  • Lopez L, Arai K, Gimenez E, et al. C-reactive protein and interleukin-6 serum levels increase as Chagas disease progresses towards cardiac failure. Rev Esp Cardiol. 2006;59:50–56.
  • Choudhuri S, Garg NJ, Sacks D. PARP1-cGAS-NF-κB pathway of proinflammatory macrophage activation by extracellular vesicles released during Trypanosoma cruzi infection and Chagas disease. PLoS Pathog. 2020;16:e1008474. doi:10.1371/journal.ppat.1008474
  • Choudhuri S, Garg NJ, Hoft DF, Koshy AA. Trypanosoma cruzi induces the PARP1/AP-1 pathway for upregulation of metalloproteinases and transforming growth factor β in macrophages: role in cardiac fibroblast differentiation and fibrosis in Chagas disease. mBio. 2020;11. doi:10.1128/mBio.01853-20
  • Tanowitz HB, Gumprecht JP, Spurr D, et al. Cytokine gene expression of endothelial cells infected with Trypanosoma cruzi. J Infect Dis. 1992;166:598–603. doi:10.1093/infdis/166.3.598
  • Huang H, Calderon TM, Berman JW, et al. Infection of endothelial cells with Trypanosoma cruzi activates NF-kappaB and induces vascular adhesion molecule expression. Infect Immun. 1999;67:5434–5440. doi:10.1128/IAI.67.10.5434-5440.1999
  • Polgar J, Matuskova J, Wagner DD. The P-selectin, tissue factor, coagulation triad. J Thromb Haemost. 2005;3:1590–1596. doi:10.1111/j.1538-7836.2005.01373.x
  • Page MJ, Bester J, Pretorius E. Interleukin-12 and its procoagulant effect on erythrocytes, platelets and fibrin(ogen): the lesser known side of inflammation. Br J Haematol. 2018;180:110–117. doi:10.1111/bjh.15020
  • Bester J, Pretorius E. Effects of IL-1beta, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep. 2016;6:32188. doi:10.1038/srep32188
  • Lavine MD, Strand MR. Insect hemocytes and their role in immunity. Insect Biochem Mol Biol. 2002;32:1295–1309. doi:10.1016/S0965-1748(02)00092-9
  • Ludwig N, Hilger A, Zarbock A, Rossaint J. Platelets at the crossroads of pro-inflammatory and resolution pathways during inflammation. Cells. 2022;11:1957. doi:10.3390/cells11121957
  • Zamora C, Canto E, Vidal S. The dual role of platelets in the cardiovascular risk of chronic inflammation. Front Immunol. 2021;12:625181. doi:10.3389/fimmu.2021.625181
  • Mantovani A, Garlanda C. Platelet-macrophage partnership in innate immunity and inflammation. Nat Immunol. 2013;14:768–770. doi:10.1038/ni.2666
  • Portier I, Campbell RA. Role of platelets in detection and regulation of infection. Arterioscler Thromb Vasc Biol. 2021;41:70–78. doi:10.1161/ATVBAHA.120.314645
  • May F, Hagedorn I, Pleines I, et al. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood. 2009;114:3464–3472.
  • Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, Larsen P, Cognasse F. Revisiting platelets and toll-like receptors (TLRs): at the interface of vascular immunity and thrombosis. Int J Mol Sci. 2020;21:6150. doi:10.3390/ijms21176150
  • Carestia A, Mena HA, Olexen CM, et al. Platelets Promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice. Cell Rep. 2019;28:896–908 e5. doi:10.1016/j.celrep.2019.06.062
  • Patsouras MD, Sikara MP, Grika EP, Moutsopoulos HM, Tzioufas AG, Vlachoyiannopoulos PG. Elevated expression of platelet-derived chemokines in patients with antiphospholipid syndrome. J Autoimmun. 2015;65:30–37. doi:10.1016/j.jaut.2015.08.001
  • Vettori S, Irace R, Riccardi A, et al. Serum CXCL4 increase in primary Sjogren’s syndrome characterizes patients with microvascular involvement and reduced salivary gland infiltration and lymph node involvement. Clin Rheumatol. 2016;35:2591–2596. doi:10.1007/s10067-016-3386-7
  • Kasper B, Brandt E, Brandau S, Petersen F. Platelet factor 4 (CXC chemokine ligand 4) differentially regulates respiratory burst, survival, and cytokine expression of human monocytes by using distinct signaling pathways. J Immunol. 2007;179:2584–2591. doi:10.4049/jimmunol.179.4.2584
  • Suzuki J, Hamada E, Shodai T, et al. Cytokine secretion from human monocytes potentiated by P-selectin-mediated cell adhesion. Int Arch Allergy Immunol. 2013;160:152–160. doi:10.1159/000339857
  • Vogel S, Rath D, Borst O, et al. Platelet-derived high-mobility group box 1 promotes recruitment and suppresses apoptosis of monocytes. Biochem Biophys Res Commun. 2016;478:143–148. doi:10.1016/j.bbrc.2016.07.078
  • Gudbrandsdottir S, Hasselbalch HC, Nielsen CH. Activated platelets enhance IL-10 secretion and reduce TNF-alpha secretion by monocytes. J Immunol. 2013;191:4059–4067. doi:10.4049/jimmunol.1201103
  • Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med. 2009;15:384–391. doi:10.1038/nm.1939
  • Carestia A, Kaufman T, Schattner M. Platelets: new bricks in the building of neutrophil extracellular traps. Front Immunol. 2016;7:271. doi:10.3389/fimmu.2016.00271
  • Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–469. doi:10.1038/nm1565
  • Jenne CN, Wong CH, Zemp FJ, et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe. 2013;13:169–180. doi:10.1016/j.chom.2013.01.005
  • Kraemer BF, Campbell RA, Schwertz H, et al. Novel anti-bacterial activities of beta-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog. 2011;7:e1002355. doi:10.1371/journal.ppat.1002355
  • Hurley SM, Lutay N, Holmqvist B, Shannon O. The dynamics of platelet activation during the progression of Streptococcal sepsis. PLoS One. 2016;11:e0163531. doi:10.1371/journal.pone.0163531
  • Vajen T, Koenen RR, Werner I, et al. Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Sci Rep. 2018;8:10647. doi:10.1038/s41598-018-29026-0
  • Mulet M, Zamora C, Porcel JM, et al. Platelet factor 4 regulates T cell effector functions in malignant pleural effusions. Cancer Lett. 2020;491:78–86. doi:10.1016/j.canlet.2020.06.014
  • Shi G, Field DJ, Ko KA, et al. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J Clin Invest. 2014;124:543–552. doi:10.1172/JCI71858
  • Jenabian MA, Patel M, Kema I, et al. Soluble CD40-ligand (sCD40L, sCD154) plays an immunosuppressive role via regulatory T cell expansion in HIV infection. Clin Exp Immunol. 2014;178:102–111. doi:10.1111/cei.12396
  • Burzynski LC, Humphry M, Pyrillou K, et al. The coagulation and immune systems are directly linked through the activation of interleukin-1alpha by thrombin. Immunity. 2019;50:1033–42 e6. doi:10.1016/j.immuni.2019.03.003
  • Thornton P, McColl BW, Greenhalgh A, Denes A, Allan SM, Rothwell NJ. Platelet interleukin-1alpha drives cerebrovascular inflammation. Blood. 2010;115:3632–3639. doi:10.1182/blood-2009-11-252643
  • Rachidi S, Metelli A, Riesenberg B, et al. Platelets subvert T cell immunity against cancer via GARP-TGFbeta axis. Sci Immunol. 2017;2. doi:10.1126/sciimmunol.aai7911
  • Zhu L, Huang Z, Stalesen R, Hansson GK, Li N. Platelets provoke distinct dynamics of immune responses by differentially regulating CD4+ T-cell proliferation. J Thromb Haemost. 2014;12:1156–1165. doi:10.1111/jth.12612
  • Zamora C, Canto E, Nieto JC, et al. Functional consequences of platelet binding to T lymphocytes in inflammation. J Leukoc Biol. 2013;94:521–529. doi:10.1189/jlb.0213074
  • de Andrade MF, de Almeida VD, de Souza LMS, Paiva DCC, Andrade CM, De Medeiros Fernandes TAA. Involvement of neutrophils in Chagas disease pathology. Parasite Immunol. 2018;40:e12593. doi:10.1111/pim.12593
  • Koo SJ, Chowdhury IH, Szczesny B, Wan X, Garg NJ. Macrophages promote oxidative metabolism to drive nitric oxide generation in response to Trypanosoma cruzi. Infect Immun. 2016;84:3527–3541. doi:10.1128/IAI.00809-16
  • Koo SJ, Szczesny B, Wan X, Putluri N, Garg NJ. Pentose phosphate shunt modulates reactive oxygen species and nitric oxide production controlling Trypanosoma cruzi in macrophages. Front Immunol. 2018;9:202. doi:10.3389/fimmu.2018.00202
  • Koo SJ, Garg NJ. Metabolic programming of macrophage functions and pathogens control. Redox Biol. 2019;24:101198. doi:10.1016/j.redox.2019.101198
  • Choudhuri S, Chowdhury IH, Garg NJ. Mitochondrial regulation of macrophage response against pathogens. Front Immunol. 2020;11:622602. doi:10.3389/fimmu.2020.622602
  • Sanchez-Villamil JP, Bautista-Nino PK, Serrano NC, Rincon MY, Garg NJ. Potential role of antioxidants as adjunctive therapy in Chagas disease. Oxid Med Cell Longev. 2020;2020:9081813. doi:10.1155/2020/9081813
  • Maldonado E, Rojas DA, Urbina F, Solari A. The oxidative stress and chronic inflammatory process in Chagas disease: role of exosomes and contributing genetic factors. Oxid Med Cell Longev. 2021;2021:4993452. doi:10.1155/2021/4993452
  • Wan X, Garg NJ. Sirtuin Control of mitochondrial dysfunction, oxidative stress, and inflammation in Chagas disease models. Front Cell Infect Microbiol. 2021;11:693051. doi:10.3389/fcimb.2021.693051
  • Keating SM, Deng X, Fernandes F, et al. Inflammatory and cardiac biomarkers are differentially expressed in clinical stages of Chagas disease. Int J Cardiol. 2015;199:451–459. doi:10.1016/j.ijcard.2015.07.040
  • Cunha-Neto E, Teixeira PC, Fonseca SG, Bilate AM, Kalil J. Myocardial gene and protein expression profiles after autoimmune injury in Chagas’ disease cardiomyopathy. Autoimmun Rev. 2011;10:163–165. doi:10.1016/j.autrev.2010.09.019
  • Garg NJ, Soman KV, Zago MP, et al. Changes in Proteome profile of peripheral blood mononuclear cells in chronic Chagas disease. PLoS Negl Trop Dis. 2016;10:e0004490. doi:10.1371/journal.pntd.0004490
  • Ferreira LR, Ferreira FM, Nakaya HI, et al. Blood Gene signatures of Chagas disease cardiomyopathy with or without ventricular dysfunction. J Infect Dis. 2016;214:161–165. doi:10.1093/infdis/jiw095
  • Souza PE, Rocha MO, Menezes CA, et al. Trypanosoma cruzi infection induces differential modulation of costimulatory molecules and cytokines by monocytes and T cells from patients with indeterminate and cardiac Chagas’ disease. Infect Immun. 2007;75:1886–1894. doi:10.1128/IAI.01931-06
  • Souza PE, Rocha MO, Rocha-Vieira E, et al. Monocytes from patients with indeterminate and cardiac forms of Chagas’ disease display distinct phenotypic and functional characteristics associated with morbidity. Infect Immun. 2004;72:5283–5291. doi:10.1128/IAI.72.9.5283-5291.2004
  • Machado FS, Dutra WO, Esper L, et al. Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Semin Immunopathol. 2012;34:753–770. doi:10.1007/s00281-012-0351-7
  • Wan X, Chowdhury IH, Jie Z, Choudhuri S, Garg NJ. Origin of monocytes/macrophages contributing to chronic inflammation in Chagas disease: SIRT1 inhibition of FAK-NFκB-dependent proliferation and proinflammatory activation of macrophages. Cells. 2019;9:80. doi:10.3390/cells9010080
  • Nogueira PM, Ribeiro K, Silveira AC, et al. Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses. J Extracell Vesicles. 2015;4:28734. doi:10.3402/jev.v4.28734
  • Ribeiro KS, Vasconcellos CI, Soares RP, et al. Proteomic analysis reveals different composition of extracellular vesicles released by two Trypanosoma cruzi strains associated with their distinct interaction with host cells. J Extracell Vesicles. 2018;7:1463779. doi:10.1080/20013078.2018.1463779
  • Yanez-Mo M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. doi:10.3402/jev.v4.27066
  • Takasugi M. Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell. 2018;17:e12734. doi:10.1111/acel.12734
  • Ramirez MI, Deolindo P, de Messias-Reason IJ, et al. Dynamic flux of microvesicles modulate parasite-host cell interaction of Trypanosoma cruzi in eukaryotic cells. Cell Microbiol. 2017;19:e12672. doi:10.1111/cmi.12672
  • Cestari I, Ansa-Addo E, Deolindo P, Inal JM, Ramirez MI. Trypanosoma cruzi immune evasion mediated by host cell-derived microvesicles. J Immunol. 2012;188:1942–1952. doi:10.4049/jimmunol.1102053
  • Chowdhury I, Koo S, Gupta S, et al. Gene expression profiling and functional characterization of macrophages in response to circulatory microparticles produced during Trypanosoma cruzi infection and Chagas disease. J Innate Immunity. 2017;9:203–216. doi:10.1159/000451055
  • Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F. Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res. 2014;329:18–25. doi:10.1016/j.yexcr.2014.07.003
  • Wen JJ, Yin YW, Garg NJ. PARP1 depletion improves mitochondrial and heart function in Chagas disease: effects on POLG dependent mtDNA maintenance. PLoS Pathog. 2018;14:e1007065. doi:10.1371/journal.ppat.1007065
  • Wang L, Wu Q, Fan Z, Xie R, Wang Z, Lu Y. Platelet mitochondrial dysfunction and the correlation with human diseases. Biochem Soc Trans. 2017;45:1213–1223. doi:10.1042/BST20170291
  • Fidler TP, Campbell RA, Funari T, et al. Deletion of GLUT1 and GLUT3 reveals multiple roles for glucose metabolism in platelet and megakaryocyte function. Cell Rep. 2017;20:881–894. doi:10.1016/j.celrep.2017.06.083
  • Granville DJ, Gottlieb RA. Mitochondria: regulators of cell death and survival. Scientific World J. 2002;2:1569–1578. doi:10.1100/tsw.2002.809
  • Di Lisa F, Carpi A, Giorgio V, Bernardi P. The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. Biochim Biophys Acta. 2011;1813:1316–1322. doi:10.1016/j.bbamcr.2011.01.031
  • Melchinger H, Jain K, Tyagi T, Hwa J. Role of platelet mitochondria: life in a nucleus-free zone. Front Cardiovasc Med. 2019;6:153. doi:10.3389/fcvm.2019.00153
  • Garcia-Souza LF, Oliveira MF. Mitochondria: biological roles in platelet physiology and pathology. Int J Biochem Cell Biol. 2014;50:156–160. doi:10.1016/j.biocel.2014.02.015
  • Choo HJ, Saafir TB, Mkumba L, Wagner MB, Jobe SM. Mitochondrial calcium and reactive oxygen species regulate agonist-initiated platelet phosphatidylserine exposure. Arterioscler Thromb Vasc Biol. 2012;32:2946–2955. doi:10.1161/ATVBAHA.112.300433
  • Sinauridze EI, Kireev DA, Popenko NY, et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost. 2007;97:425–434. doi:10.1160/TH06-06-0313
  • Kohler C, Radpour R, Barekati Z, et al. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer. 2009;8:105. doi:10.1186/1476-4598-8-105
  • Sudakov NP, Popkova TP, Katyshev AI, et al. Level of blood cell-free circulating mitochondrial DNA as a novel biomarker of acute myocardial ischemia. Biochemistry. 2015;80:1387–1392. doi:10.1134/S000629791510020X
  • Malik AN, Parsade CK, Ajaz S, et al. Altered circulating mitochondrial DNA and increased inflammation in patients with diabetic retinopathy. Diabetes Res Clin Pract. 2015;110:257–265. doi:10.1016/j.diabres.2015.10.006
  • Meddeb R, Dache ZAA, Thezenas S, et al. Quantifying circulating cell-free DNA in humans. Sci Rep. 2019;9:5220. doi:10.1038/s41598-019-41593-4
  • Al Amir Dache Z, Otandault A, Tanos R, et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 2020;34:3616–3630. doi:10.1096/fj.201901917RR
  • Grazioli S, Pugin J. Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front Immunol. 2018;9:832. doi:10.3389/fimmu.2018.00832
  • Rodriguez-Nuevo A, Zorzano A. The sensing of mitochondrial DAMPs by non-immune cells. Cell Stress. 2019;3:195–207. doi:10.15698/cst2019.06.190
  • Puhm F, Afonyushkin T, Resch U, et al. Mitochondria Are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. Circ Res. 2019;125:43–52. doi:10.1161/CIRCRESAHA.118.314601
  • Boudreau LH, Duchez AC, Cloutier N, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014;124:2173–2183. doi:10.1182/blood-2014-05-573543