182
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Metallothionein-1 is Positively Correlated with Inflammation and Ankylosing Spondylitis Activity

ORCID Icon, , , , , , , & show all
Pages 5935-5944 | Received 28 Jul 2022, Accepted 13 Oct 2022, Published online: 21 Oct 2022

References

  • Garcia-Montoya L, Gul H, Emery P, Recent advances in ankylosing spondylitis: understanding the disease and management. F1000Res, 2018. 7. 1512 doi:10.12688/f1000research.14956.1
  • Ranganathan V, Gracey E, Brown MA, et al. Pathogenesis of ankylosing spondylitis - recent advances and future directions. Nat Rev Rheumatol. 2017;13(6):359–367. doi:10.1038/nrrheum.2017.56
  • Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet. 2017;390(10089):73–84. doi:10.1016/S0140-6736(16)31591-4
  • Robinson PC, van der Linden S, Khan MA, et al. Axial spondyloarthritis: concept, construct, classification and implications for therapy. Nat Rev Rheumatol. 2021;17(2):109–118. doi:10.1038/s41584-020-00552-4
  • Stolwijk C, van Onna M, Boonen A, et al. Global prevalence of spondyloarthritis: a systematic review and meta-regression analysis. Arthritis Care Res. 2016;68(9):1320–1331. doi:10.1002/acr.22831
  • Sheehan NJ. The ramifications of HLA-B27. J R Soc Med. 2004;97(1):10–14. doi:10.1177/014107680409700102
  • Smith JA. Update on ankylosing spondylitis: current concepts in pathogenesis. Curr Allergy Asthma Rep. 2015;15(1):489. doi:10.1007/s11882-014-0489-6
  • Tan AL, Marzo-Ortega H, O’Connor P, et al. Efficacy of anakinra in active ankylosing spondylitis: a clinical and magnetic resonance imaging study. Ann Rheum Dis. 2004;63(9):1041–1045. doi:10.1136/ard.2004.020800
  • Falkenbach A, Herold M, Wigand R. Interleukin-6 serum concentration in ankylosing spondylitis: a reliable predictor of disease progression in the subsequent year? Rheumatol Int. 2000;19(4):149–151. doi:10.1007/s002960050119
  • Gratacós J, Collado A, Filella X, et al. Serum cytokines (IL-6, TNF-alpha, IL-1 beta and IFN-gamma) in ankylosing spondylitis: a close correlation between serum IL-6 and disease activity and severity. Br J Rheumatol. 1994;33(10):927–931. doi:10.1093/rheumatology/33.10.927
  • Mei Y, Pan F, Gao J, et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol. 2011;30(2):269–273. doi:10.1007/s10067-010-1647-4
  • van der Weijden MA, Claushuis TAM, Nazari T, et al. High prevalence of low bone mineral density in patients within 10 years of onset of ankylosing spondylitis: a systematic review. Clin Rheumatol. 2012;31(11):1529–1535. doi:10.1007/s10067-012-2018-0
  • Briot K, Roux C. Inflammation, bone loss and fracture risk in spondyloarthritis. RMD Open. 2015;1(1):e000052. doi:10.1136/rmdopen-2015-000052
  • Geusens P, Vosse D, van der Linden S. Osteoporosis and vertebral fractures in ankylosing spondylitis. Curr Opin Rheumatol. 2007;19(4):335–339. doi:10.1097/BOR.0b013e328133f5b3
  • Dai H, Wang L, Li L, et al. Metallothionein 1: a new spotlight on inflammatory diseases. Front Immunol. 2021;12:739918. doi:10.3389/fimmu.2021.739918
  • Merlos Rodrigo MA, Jimenez Jimemez AM, Haddad Y, et al. Metallothionein isoforms as double agents - Their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resist Updat. 2020;52:100691. doi:10.1016/j.drup.2020.100691
  • Si M, Lang J. The roles of metallothioneins in carcinogenesis. J Hematol Oncol. 2018;11(1):107. doi:10.1186/s13045-018-0645-x
  • Sun J, Li L, Li L, et al. Metallothionein-1 suppresses rheumatoid arthritis pathogenesis by shifting the Th17/Treg balance. Eur J Immunol. 2018;48(9):1550–1562. doi:10.1002/eji.201747151
  • Wang C, Gong Z, Hu S, et al. Metallothionein-1 is associated with osteoarthritis disease activity and suppresses proinflammatory cytokines production in synovial cells. Int Immunopharmacol. 2019;75:105815. doi:10.1016/j.intimp.2019.105815
  • van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27(4):361–368. doi:10.1002/art.1780270401
  • Lukas C, Landewé R, Sieper J, et al. Development of an ASAS-endorsed disease activity score (ASDAS) in patients with ankylosing spondylitis. Ann Rheum Dis. 2009;68(1):18–24. doi:10.1136/ard.2008.094870
  • van der Heijde D, Lie E, Kvien TK, et al. ASDAS, a highly discriminatory ASAS-endorsed disease activity score in patients with ankylosing spondylitis. Ann Rheum Dis. 2009;68(12):1811–1818. doi:10.1136/ard.2008.100826
  • Rudwaleit M, Baeten D. Ankylosing spondylitis and bowel disease. Best Pract Res Clin Rheumatol. 2006;20(3):451–471. doi:10.1016/j.berh.2006.03.010
  • Tsuji T, Naito Y, Takagi T, et al. Role of metallothionein in murine experimental colitis. Int J Mol Med. 2013;31(5):1037–1046. doi:10.3892/ijmm.2013.1294
  • Bal A, Unlu E, Bahar G, et al. Comparison of serum IL-1 beta, sIL-2R, IL-6, and TNF-alpha levels with disease activity parameters in ankylosing spondylitis. Clin Rheumatol. 2007;26(2):211–215. doi:10.1007/s10067-006-0283-5
  • Spiering R, Wagenaar-Hilbers J, Huijgen V, et al. Membrane-bound metallothionein 1 of murine dendritic cells promotes the expansion of regulatory T cells in vitro. Toxicol Sci. 2014;138(1):69–75. doi:10.1093/toxsci/kft268
  • Sakurai A, Hara S, Okano N, et al. Regulatory role of metallothionein in NF-kappaB activation. FEBS Lett. 1999;455(1–2):55–58. doi:10.1016/S0014-5793(99)00839-X
  • Ryu HH, Jung S, Jung TY, et al. Role of metallothionein 1E in the migration and invasion of human glioma cell lines. Int J Oncol. 2012;41(4):1305–1313. doi:10.3892/ijo.2012.1570
  • Haase S, Linker RA. Inflammation in multiple sclerosis. Ther Adv Neurol Disord. 2021;14:17562864211007687. doi:10.1177/17562864211007687
  • Pegoretti V, Swanson KA, Bethea JR, et al. Inflammation and oxidative stress in multiple sclerosis: consequences for therapy development. Oxid Med Cell Longev. 2020;2020:7191080. doi:10.1155/2020/7191080
  • Pajares M, I. Rojo A, Manda G, et al. Inflammation in parkinson’s disease: mechanisms and therapeutic implications. Cells. 2020;9(7):1687. doi:10.3390/cells9071687
  • Forloni G, Balducci C. Alzheimer’s disease, oligomers, and inflammation. J Alzheimers Dis. 2018;62(3):1261–1276. doi:10.3233/JAD-170819
  • Lyon MS, Wosiski-Kuhn M, Gillespie R, et al. Inflammation, Immunity, and amyotrophic lateral sclerosis: I. Etiology and pathology. Muscle Nerve. 2019;59(1):10–22. doi:10.1002/mus.26289
  • Guo JZ, Wang W-H, Li L-F, et al. The role of metallothionein in a dinitrofluorobenzene-induced atopic dermatitis-like murine model. Sci Rep. 2018;8(1):11129. doi:10.1038/s41598-018-29410-w
  • Carrasco J, Hernandez J, Bluethmann H, et al. Interleukin-6 and tumor necrosis factor-alpha type 1 receptor deficient mice reveal a role of IL-6 and TNF-alpha on brain metallothionein-I and -III regulation. Brain Res Mol Brain Res. 1998;57(2):221–234. doi:10.1016/S0169-328X(98)00087-4
  • Schroeder JJ, Cousins RJ. Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures. Proc Natl Acad Sci U S A. 1990;87(8):3137–3141. doi:10.1073/pnas.87.8.3137
  • Sato M, Sasaki M, Hojo H. Tissue specific induction of metallothionein synthesis by tumor necrosis factor-alpha. Res Commun Chem Pathol Pharmacol. 1992;75(2):159–172.
  • Liu J, Liu YP, Sendelbach LE, Klaassen CD. Endotoxin induction of hepatic metallothionein is mediated through cytokines. Toxicol Appl Pharmacol. 1991;109(2):235–240. doi:10.1016/0041-008X(91)90171-A
  • Hernández J, Molinero A, Campbell IL, et al. Transgenic expression of interleukin 6 in the central nervous system regulates brain metallothionein-I and -III expression in mice. Brain Res Mol Brain Res. 1997;48(1):125–131. doi:10.1016/S0169-328X(97)00087-9
  • Sato M, Sasaki M, Hojo H. Differential induction of metallothionein synthesis by interleukin-6 and tumor necrosis factor-alpha in rat tissues. Int J Immunopharmacol. 1994;16(2):187–195. doi:10.1016/0192-0561(94)90075-2
  • Ruttkay-Nedecky B, Nejdl L, Gumulec J, et al. The role of metallothionein in oxidative stress. Int J Mol Sci. 2013;14(3):6044–6066. doi:10.3390/ijms14036044
  • Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol. 2000;59(1):95–104. doi:10.1016/S0006-2952(99)00301-9
  • Chen L, Ma L, Bai Q, et al. Heavy metal-induced metallothionein expression is regulated by specific protein phosphatase 2A complexes. J Biol Chem. 2014;289(32):22413–22426. doi:10.1074/jbc.M114.548677
  • Inoue K, Takano H, Shimada A, et al. Metallothionein as an anti-inflammatory mediator. Mediators Inflamm. 2009;2009:101659. doi:10.1155/2009/101659
  • Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84. doi:10.1016/j.biocel.2006.07.001
  • Jarosz M, Olbert M, Wyszogrodzka G, et al. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017;25(1):11–24. doi:10.1007/s10787-017-0309-4
  • Perry DK, Smyth MJ, Stennicke HR, et al. Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem. 1997;272(30):18530–18533. doi:10.1074/jbc.272.30.18530
  • Kang M, Zhao L, Ren M, et al. Reduced metallothionein expression induced by Zinc deficiency results in apoptosis in hepatic stellate cell line LX-2. Int J Clin Exp Med. 2015;8(11):20603–20609.