318
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Nanozymes in the Treatment of Diseases Caused by Excessive Reactive Oxygen Specie

, & ORCID Icon
Pages 6307-6328 | Received 21 Jul 2022, Accepted 11 Oct 2022, Published online: 15 Nov 2022

References

  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(2):335–344. doi:10.1113/jphysiol.2003.049478
  • Held P. An introduction to reactive oxygen species. Tech Resources-App Guides. 2012;802:5–9.
  • Bayir H. Reactive oxygen species. Crit Care Med. 2005;33(12 Suppl):S498–501. doi:10.1097/01.ccm.0000186787.64500.12
  • Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–990. doi:10.1016/j.cellsig.2012.01.008
  • Dhiman A, Handa M, Ruwali M, Singh DP, Kesharwani P, Shukla R. Recent trends of natural based therapeutics for mitochondria targeting in Alzheimer’s disease. Mitochondrion. 2022;64:112–124. doi:10.1016/j.mito.2022.03.006
  • Mittler R. ROS are good. Trends in Plant Sci. 2017;22(1):11–19. doi:10.1016/j.tplants.2016.08.002
  • Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057. doi:10.2147/JIR.S275595
  • Kang DH. Oxidative stress, DNA damage, and breast cancer. AACN Adv Crit Care. 2002;13(4):540–549. doi:10.1097/00044067-200211000-00007
  • Monaghan P, Metcalfe NB, Torres R. Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett. 2009;12(1):75–92. doi:10.1111/j.1461-0248.2008.01258.x
  • Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;10(S7):S18–25. doi:10.1038/nrn1434
  • Melo A, Monteiro L, Lima RM, de Oliveira DM, de Cerqueira MD, El-Bachá RS. Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. Oxid Med Cell Longev. 2011;2011:1–14. doi:10.1155/2011/467180
  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–1167. doi:10.1089/ars.2012.5149
  • Amani H, Habibey R, Hajmiresmail SJ, Latifi S, Pazoki-Toroudi H, Akhavan O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B. 2017;5(48):9452–9476. doi:10.1039/c7tb01689a
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95. doi:10.1152/physrev.00018.2001
  • Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–6093. doi:10.1039/c3cs35486e
  • Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–583. doi:10.1038/nnano.2007.260
  • Yu X, Xu Z, Wang X, Xu Q, Chen J. Bactrian camel serum albumins-based nanocomposite as versatile biocargo for drug delivery, biocatalysis and detection of hydrogen peroxide. Mater Sci Eng C. 2020;109:110627. doi:10.1016/j.msec.2020.110627
  • Wang D, Jana D, Zhao Y. Metal–organic framework derived nanozymes in biomedicine. Acc Chem Res. 2020;53(7):1389–1400. doi:10.1021/acs.accounts.0c00268
  • Yan X, Gao L. Nanozymology: an Overview. In: Yan X, editor. Nanozymology. Nanostructure Science and Technology. Singapore: Springer; 2020:3–16. doi:10.1007/978-981-15-1490-6_1
  • Liu T, Xiao B, Xiang F, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun. 2020;11(1):2788. doi:10.1038/s41467-020-16544-7
  • Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–1076. doi:10.1039/c8cs00457a
  • Gaur M, Misra C, Yadav AB, et al. Biomedical applications of carbon nanomaterials: fullerenes, quantum dots, nanotubes, nanofibers, and graphene. Materials. 2021;14(20):5978. doi:10.3390/ma14205978
  • Karimi-Maleh H, Beitollahi H, Kumar PS, et al. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem Toxicol. 2022;164:112961. doi:10.1016/j.fct.2022.112961
  • Dellinger A, Zhou Z, Connor J, et al. Application of fullerenes in nanomedicine: an update. Nanomedicine. 2013;8(7):1191–1208. doi:10.2217/nnm.13.99
  • Speranza G. Carbon nanomaterials: synthesis, functionalization and sensing applications. Nanomaterials. 2021;11(4):967. doi:10.3390/nano11040967
  • Bakry R, Vallant RM, Najam-ul-Haq M, et al. Medicinal applications of fullerenes. Int J Nanomedicine. 2007;2(4):639–649.
  • Xiao L, Takada H, Gan X, Miwa N. The water-soluble fullerene derivative “Radical Sponge” exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes. Bioorg Med Chem Lett. 2006;16(6):1590–1595. doi:10.1016/j.bmcl.2005.12.011
  • Castro E, Garcia AH, Zavala G, Echegoyen L. Fullerenes in Biology and Medicine. J Mater Chem B. 2017;5(32):6523–6535. doi:10.1039/C7TB00855D
  • Cheng X, Ni X, Wu R, et al. Evaluation of the structure–activity relationship of carbon nanomaterials as antioxidants. Nanomedicine. 2018;13(7):733–747. doi:10.2217/nnm-2017-0314
  • Yudoh K, Karasawa R, Masuko K, Kato T. Water-soluble fullerene (C60) inhibits the development of arthritis in the rat model of arthritis. Int J Nanomedicine. 2009;4:217–225. doi:10.2147/ijn.s7653
  • Hao T, Li J, Yao F, et al. Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in brown adipose-derived stem cells and cardiac repair. ACS Nano. 2017;11(6):5474–5488. doi:10.1021/acsnano.7b00221
  • Aqel A, Abou El-Nour KM, Ammar RA, Al-Warthan A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem. 2012;5(1):1–23. doi:10.1016/j.arabjc.2010.08.022
  • Fenoglio I, Tomatis M, Lison D, et al. Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic Biol Med. 2006;40(7):1227–1233. doi:10.1016/j.freeradbiomed.2005.11.010
  • Qiu Y, Wang Z, Owens AC, et al. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale. 2014;6(20):11744–11755. doi:10.1039/c4nr03275f
  • Ren C, Hu X, Zhou Q. Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase-like activity and metabolic regulation. Adv Sci. 2018;5(5):1700595. doi:10.1002/advs.201700595
  • Han J, Kim YS, Lim MY, et al. Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair. ACS Nano. 2018;12(2):1959–1977. doi:10.1021/acsnano.7b09107
  • Chen Z, Yin JJ, Zhou YT, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano. 2012;6(5):4001–4012. doi:10.1021/nn300291r
  • Gao L, Fan K, Yan X. Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics. 2017;7(13):3207–3227. doi:10.7150/thno.19738
  • Zhang Y, Wang Z, Li X, et al. Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in Drosophila. Adv Mater. 2016;28(7):1387–1393. doi:10.1002/adma.201503893
  • Wei Z, Wang L, Tang C, et al. Metal-phenolic networks nanoplatform to mimic antioxidant defense system for broad-spectrum radical eliminating and endotoxemia treatment. Adv Funct Mater. 2020;30(49):2002234. doi:10.1002/adfm.202002234
  • Zhang W, Ma D, Du J. Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta. 2014;120:362–367. doi:10.1016/j.talanta.2013.12.028
  • Zhang W, Hu S, Yin JJ, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc. 2016;138(18):5860–5865. doi:10.1021/jacs.5b12070
  • Zhao J, Cai X, Gao W, et al. Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl Mater Interfaces. 2018;10(31):26108–26117. doi:10.1021/acsami.8b10345
  • Estelrich J, Busquets MA. Prussian blue: a nanozyme with versatile catalytic properties. Int J Mol Sci. 2021;22(11):5993. doi:10.3390/ijms22115993
  • Chen J, Wang Q, Huang L, et al. Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Res. 2018;11(9):4905–4913. doi:10.1007/s12274-018-2079-8
  • Bai H, Kong F, Feng K, et al. Prussian blue nanozymes prevent anthracycline-induced liver injury by attenuating oxidative stress and regulating inflammation. ACS Appl Mater Interfaces. 2021;13(36):42382–42395. doi:10.1021/acsami.1c09838
  • Xie X, Zhao J, Gao W, et al. Prussian blue nanozyme-mediated nanoscavenger ameliorates acute pancreatitis via inhibiting TLRs/NF-κB signaling pathway. Theranostics. 2021;11(7):3213–3228. doi:10.7150/thno.52010
  • Sahu A, Jeon J, Lee MS, Yang HS, Tae G. Antioxidant and anti-inflammatory activities of Prussian blue nanozyme promotes full-thickness skin wound healing. Mater Sci Eng C Mater Biol Appl. 2021;119:111596. doi:10.1016/j.msec.2020.111596
  • Zhang K, Tu M, Gao W, et al. Hollow Prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 2019;19(5):2812–2823. doi:10.1021/acs.nanolett.8b04729
  • Feng L, Dou C, Xia Y, et al. Neutrophil-like cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery. ACS Nano. 2021;15(2):2263–2280. doi:10.1021/acsnano.0c07973
  • He W, Zhou YT, Wamer WG, et al. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials. 2013;34(3):765–773. doi:10.1016/j.biomaterials.2012.10.010
  • Liu Z, Shen Y, Wu Y, et al. An intrinsic therapy of gold nanoparticles in focal cerebral ischemia-reperfusion injury in rats. J Biomed Nanotechnol. 2013;9(6):1017–1028. doi:10.1166/jbn.2013.1597
  • Liu CP, Wu TH, Lin YL, Liu CY, Wang S, Lin SY. Tailoring enzyme-like activities of gold nanoclusters by polymeric tertiary amines for protecting neurons against oxidative stress. Small. 2016;12(30):4127–4135. doi:10.1002/smll.201503919
  • Schubert D, Dargusch R, Raitano J, Chan SW. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun. 2006;342(1):86–91. doi:10.1016/j.bbrc.2006.01.129
  • Pirmohamed T, Dowding JM, Singh S, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb). 2010;46(16):2736–2738. doi:10.1039/b922024k
  • Li Y, He X, Yin JJ, et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew Chem Int Ed Engl. 2015;54(6):1832–1835. doi:10.1002/anie.201410398
  • Akhtar MJ, Ahamed M, Alhadlaq HA, Khan MAM, Alrokayan SA. Glutathione replenishing potential of CeO2 nanoparticles in human breast and fibrosarcoma cells. J Colloid Interface Sci. 2015;453:21–27. doi:10.1016/j.jcis.2015.04.049
  • Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009;5(24):2848–2856. doi:10.1002/smll.200901048
  • Pagliari F, Mandoli C, Forte G, et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano. 2012;6(5):3767–3775. doi:10.1021/nn2048069
  • Dowding JM, Song W, Bossy K, et al. Cerium oxide nanoparticles protect against Abeta-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ. 2014;21(10):1622–1632. doi:10.1038/cdd.2014.72
  • Singh R, Singh S. Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids Surf B Biointerfaces. 2019;175:625–635. doi:10.1016/j.colsurfb.2018.12.042
  • Bao Q, Hu P, Xu Y, et al. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano. 2018;12(7):6794–6805. doi:10.1021/acsnano.8b01994
  • Kim CK, Kim T, Choi IY, et al. Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl. 2012;51(44):11039–11043. doi:10.1002/anie.201203780
  • Kwon HJ, Cha MY, Kim D, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano. 2016;10(2):2860–2870. doi:10.1021/acsnano.5b08045
  • Kim D, Kwon HJ, Hyeon T. Magnetite/ceria nanoparticle assemblies for extracorporeal cleansing of amyloid-beta in Alzheimer’s disease. Adv Mater. 2019;31(19):e1807965. doi:10.1002/adma.201807965
  • Chen Q, Du Y, Zhang K, et al. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano. 2018;12(2):1321–1338. doi:10.1021/acsnano.7b07625
  • Fu S, Chen H, Yang W, et al. ROS-targeted depression therapy via BSA-incubated ceria nanoclusters. Nano Lett. 2022;22(11):4519–4527. doi:10.1021/acs.nanolett.2c01334
  • Kim J, Hong G, Mazaleuskaya L, et al. Ultrasmall antioxidant cerium oxide nanoparticles for regulation of acute inflammation. ACS Appl Mater Interfaces. 2021;13(51):60852–60864. doi:10.1021/acsami.1c16126
  • Zhao S, Li Y, Liu Q, et al. An orally administered CeO2 montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv Funct Mater. 2020;30(45). doi:10.1002/adfm.202004692
  • Lin A, Sun Z, Xu X, et al. Self-cascade uricase/catalase mimics alleviate acute gout. Nano Lett. 2022;22(1):508–516. doi:10.1021/acs.nanolett.1c04454
  • Wu L, Liu G, Wang W, et al. Cyclodextrin-modified CeO2 nanoparticles as a multifunctional nanozyme for combinational therapy of psoriasis. Int J Nanomedicine. 2020;15:2515–2527. doi:10.2147/IJN.S246783
  • Soh M, Kang DW, Jeong HG, et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew Chem Int Ed Engl. 2017;56(38):11399–11403. doi:10.1002/anie.201704904
  • Li F, Qiu Y, Xia F, et al. Dual detoxification and inflammatory regulation by ceria nanozymes for drug-induced liver injury therapy. Nano Today. 2020;35:100925. doi:10.1016/j.nantod.2020.100925
  • Adebayo OA, Akinloye O, Adaramoye OA. Cerium oxide nanoparticles attenuate oxidative stress and inflammation in the liver of diethylnitrosamine-treated mice. Biol Trace Elem Res. 2020;193(1):214–225. doi:10.1007/s12011-019-01696-5
  • Kwon HJ, Kim D, Seo K, et al. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s disease. Angew Chem Int Ed Engl. 2018;57(30):9408–9412. doi:10.1002/anie.201805052
  • Heckman KL, DeCoteau W, Estevez A, et al. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano. 2013;7(12):10582–10596. doi:10.1021/nn403743b
  • Yu Y, Zhao S, Gu D, et al. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS-NFκB pathway. Nanoscale. 2022;14(7):2628–2637. doi:10.1039/d1nr06043k
  • Korschelt K, Ragg R, Metzger CS, et al. Glycine-functionalized copper(ii) hydroxide nanoparticles with high intrinsic superoxide dismutase activity. Nanoscale. 2017;9(11):3952–3960. doi:10.1039/c6nr09810j
  • Hao C, Qu A, Xu L, et al. Chiral molecule-mediated porous CuxO nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J Am Chem Soc. 2019;141(2):1091–1099. doi:10.1021/jacs.8b11856
  • Liu X, Wang Q, Zhao H, Zhang L, Su Y, Lv Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst. 2012;137(19):4552–4558. doi:10.1039/c2an35700c
  • Li W, Liu Z, Liu C, Guan Y, Ren J, Qu X. Manganese dioxide nanozymes as responsive cytoprotective shells for individual living cell encapsulation. Angew Chem Int Ed Engl. 2017;56(44):13661–13665. doi:10.1002/anie.201706910
  • Yao J, Cheng Y, Zhou M, et al. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem Sci. 2018;9(11):2927–2933. doi:10.1039/c7sc05476a
  • Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G. A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system. Nanoscale. 2019;11(9):3855–3863. doi:10.1039/c8nr09397k
  • Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew Chem Int Ed Engl. 2017;56(45):14267–14271. doi:10.1002/anie.201708573
  • Huang Y, Liu C, Pu F, Liu Z, Ren J, Qu X. A GO-Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chem Commun (Camb). 2017;53(21):3082–3085. doi:10.1039/c7cc00045f
  • Huang Y, Liu Z, Liu C, Zhang Y, Ren J, Qu X. Selenium-based nanozyme as biomimetic antioxidant machinery. Chemistry. 2018;24(40):10224–10230. doi:10.1002/chem.201801725
  • Chen X, Zhu X, Gong Y, et al. Porous selenium nanozymes targeted scavenging ROS synchronize therapy local inflammation and sepsis injury. Appl Mater Today. 2021;22. doi:10.1016/j.apmt.2020.100929
  • Chen B, Xiang S, Qian G. Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res. 2010;43(8):1115–1124. doi:10.1021/ar100023y
  • Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal-organic framework materials as chemical sensors. Chem Rev. 2012;112(2):1105–1125. doi:10.1021/cr200324t
  • Tan H, Ma C, Gao L, et al. Metal–organic framework‐derived copper nanoparticle@ carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chem Eur J. 2014;20(49):16377–16383. doi:10.1002/chem.201404960
  • Zhang JW, Zhang HT, Du ZY, Wang X, Yu SH, Jiang HL. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun (Camb). 2014;50(9):1092–1094. doi:10.1039/c3cc48398c
  • Qi Z, Wang L, You Q, Chen Y. PA-Tb-Cu MOF as luminescent nanoenzyme for catalytic assay of hydrogen peroxide. Biosens Bioelectron. 2017;96:227–232. doi:10.1016/j.bios.2017.05.013
  • Chen WH, Vazquez-Gonzalez M, Kozell A, Cecconello A, Willner I. Cu2+-modified metal-organic framework nanoparticles: a peroxidase-mimicking nanoenzyme. Small. 2018;14(5). doi:10.1002/smll.201703149
  • Zheng HQ, Liu CY, Zeng XY, et al. MOF-808: a metal-organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing. Inorg Chem. 2018;57(15):9096–9104. doi:10.1021/acs.inorgchem.8b01097
  • Zhang K, Meng X, Cao Y, et al. Metal-organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy. Adv Funct Mater. 2018;28(42):1804634. doi:10.1002/adfm.201804634
  • Li H, Cao X, Fei X, Zhang S, Xian Y. Nanoscaled luminescent terbium metal–organic frameworks for measuring and scavenging reactive oxygen species in living cells. J Mater Chem B. 2019;7(18):3027–3033. doi:10.1039/c9tb00361d
  • Zhang L, Zhang Y, Wang Z, et al. Constructing metal–organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater Horiz. 2019;6(8):1682–1687. doi:10.1039/c9mh00339h
  • Liu H, Yang Y, Liu Y, et al. Melanin-like nanomaterials for advanced biomedical applications: a versatile platform with extraordinary promise. Adv Sci. 2020;7(7):1903129. doi:10.1002/advs.201903129
  • Yue Y, Zhao X. Melanin-like nanomedicine in photothermal therapy applications. Int J Mol Sci. 2021;22(1):399. doi:10.3390/ijms22010399
  • Tada M, Kohno M, Niwano Y. Scavenging or quenching effect of melanin on superoxide anion and singlet oxygen. JClinbiochem nutr. 2010;46:224–228. doi:10.3164/jcbn.09-84
  • Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057–5115. doi:10.1021/cr400407a
  • Hu J, Yang L, Yang P, Jiang S, Liu X, Li Y. Polydopamine free radical scavengers. Biomater Sci. 2020;8(18):4940–4950. doi:10.1039/d0bm01070g
  • Sun T, Jiang D, Rosenkrans ZT, et al. A melanin-based natural antioxidant defense nanosystem for theranostic application in acute kidney injury. Adv Funct Mater. 2019;29(48):1904833. doi:10.1002/adfm.201904833
  • Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res. 2013;46(8):1740–1748. doi:10.1021/ar300361m
  • Jiao L, Yan H, Wu Y, et al. When nanozymes meet single-atom catalysis. Angew Chem Int Ed Engl. 2020;59(7):2565–2576. doi:10.1002/anie.201905645
  • Pei J, Zhao R, Mu X, Wang J, Liu C, Zhang XD. Single-atom nanozymes for biological applications. Biomater Sci. 2020;8(23):6428–6441. doi:10.1039/d0bm01447h
  • Cao F, Zhang L, You Y, Zheng L, Ren J, Qu X. An enzyme‐mimicking single‐atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angewandte Chemie. 2020;132(13):5146–5153. doi:10.1002/ange.201912182
  • Yan R, Sun S, Yang J, et al. Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS nano. 2019;13(10):11552–11560. doi:10.1021/acsnano.9b05075
  • Korsvik C, Patil S, Seal S, Self WT. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb). 2007;(10):1056–1058. doi:10.1039/b615134e
  • Xi Z, Gao W, Xia X. Size effect in Pd-Ir core-shell nanoparticles as nanozymes. Chembiochem. 2020;21(17):2440–2444. doi:10.1002/cbic.202000147
  • Xu R, Wang D, Zhang J, Li Y. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem Asian J. 2006;1(6):888–893. doi:10.1002/asia.200600260
  • Ge C, Fang G, Shen X, et al. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano. 2016;10(11):10436–10445. doi:10.1021/acsnano.6b06297
  • He W, Wu X, Liu J, et al. Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater. 2010;22(9):2988–2994. doi:10.1021/cm100393v
  • Wu J, Qin K, Yuan D, et al. Rational design of Au@Pt multibranched nanostructures as bifunctional nanozymes. ACS Appl Mater Interfaces. 2018;10(15):12954–12959. doi:10.1021/acsami.7b17945
  • Xia X, Zhang J, Lu N, et al. Pd–Ir core–shell nanocubes: a type of highly efficient and versatile peroxidase mimic. Acs Nano. 2015;9(10):9994–10004. doi:10.1021/acsnano.5b03525
  • Gao Z, Ye H, Tang D, et al. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 2017;17(9):5572–5579. doi:10.1021/acs.nanolett.7b02385
  • Lv F, Gong Y, Cao Y, et al. A convenient detection system consisting of efficient Au@PtRu nanozymes and alcohol oxidase for highly sensitive alcohol biosensing. Nanoscale Adv. 2020;2(4):1583–1589. doi:10.1039/d0na00002g
  • Mu X, Wang J, Li Y, et al. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano. 2019;13(2):1870–1884. doi:10.1021/acsnano.8b08045
  • Wang Q, Cheng C, Zhao S, et al. A valence‐engineered self‐cascading antioxidant nanozyme for the therapy of inflammatory bowel disease. Angew Chem Int Ed Engl. 2022. doi:10.1002/anie.202201101
  • Wang C, Ren G, Yuan B, et al. Enhancing enzyme-like activities of Prussian blue analog nanocages by molybdenum doping: toward cytoprotecting and online optical hydrogen sulfide monitoring. Anal Chem. 2020;92(11):7822–7830. doi:10.1021/acs.analchem.0c01028
  • Liu Y-Q, Mao Y, Xu E, et al. Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson’s disease. Nano Today. 2021;36:101027. doi:10.1016/j.nantod.2020.101027
  • Liu B, Liu J. Surface modification of nanozymes. Nano Res. 2017;10(4):1125–1148. doi:10.1007/s12274-017-1426-5
  • Liu B, Huang Z, Liu J. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F− detection. Nanoscale. 2016;8(28):13562–13567. doi:10.1039/c6nr02730j
  • Wang S, Chen W, Liu AL, Hong L, Deng HH, Lin XH. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. Chemphyschem. 2012;13(5):1199–1204. doi:10.1002/cphc.201100906
  • Zhang XQ, Gong SW, Zhang Y, Yang T, Wang CY, Gu N. Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem. 2010;20(24). doi:10.1039/c0jm00174k
  • Liu X, Wei W, Yuan Q, et al. Apoferritin-CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem Commun (Camb). 2012;48(26):3155–3157. doi:10.1039/c1cc15815e
  • Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Engl. 2009;48(13):2308–2312. doi:10.1002/anie.200805279
  • Pautler R, Kelly EY, Huang PJ, Cao J, Liu B, Liu J. Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching. ACS Appl Mater Interfaces. 2013;5(15):6820–6825. doi:10.1021/am4018863
  • Fan K, Wang H, Xi J, et al. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem Commun (Camb). 2017;53(2):424–427. doi:10.1039/C6CC08542C
  • Sun Y, Zhao C, Gao N, Ren J, Qu X. Stereoselective nanozyme based on ceria nanoparticles engineered with amino acids. Chem Eur J. 2017;23(72):18146–18150. doi:10.1002/chem.201704579
  • Zhang R, Zhou Y, Yan X, Fan K. Advances in chiral nanozymes: a review. Mikrochim Acta. 2019;186(12):782. doi:10.1007/s00604-019-3922-7
  • Chen JLY, Pezzato C, Scrimin P, Prins LJ. Chiral nanozymes–gold nanoparticle‐based transphosphorylation catalysts capable of enantiomeric discrimination. Chem Eur J. 2016;22(21):7028–7032. doi:10.1002/chem.201600853
  • Zhan P, Wang ZG, Li N, Ding B. Engineering gold nanoparticles with DNA ligands for selective catalytic oxidation of chiral substrates. ACS Catal. 2015;5(3):1489–1498. doi:10.1021/cs5015805
  • Wang H, Yu D, Fang J, et al. Phenol-like group functionalized graphene quantum dots structurally mimicking natural antioxidants for highly efficient acute kidney injury treatment. Chem Sci. 2020;11(47):12721–12730. doi:10.1039/d0sc03246h
  • Sun X, Guo S, Chung CS, Zhu W, Sun S. A sensitive H2O2 assay based on dumbbell-like PtPd-Fe3O4 nanoparticles. Adv Mater. 2013;25(1):132–136. doi:10.1002/adma.201203218
  • Liu M, Li Z, Li Y, Chen J, Yuan Q. Self-assembled nanozyme complexes with enhanced cascade activity and high stability for colorimetric detection of glucose. Chin Chem Lett. 2019;30(5):1009–1012. doi:10.1016/j.cclet.2018.12.021
  • Wang Z, Dong K, Liu Z, et al. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials. 2017;113:145–157. doi:10.1016/j.biomaterials.2016.10.041
  • Zhang L, Pan J, Long Y, et al. CeO2-encapsulated hollow Ag-Au nanocage hybrid nanostructures as high-performance catalysts for cascade reactions. Small. 2019;15(43):e1903182. doi:10.1002/smll.201903182
  • Zhang S, Li H, Wang Z, et al. A strongly coupled Au/Fe3O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale. 2015;7(18):8495–8502. doi:10.1039/c5nr00527b
  • Huang Y, Liu Z, Liu C, et al. Self‐assembly of multi‐nanozymes to mimic an intracellular antioxidant defense system. Angew Chem Int Ed Engl. 2016;128(23):6758–6762. doi:10.1002/ange.201600868
  • He L, Huang G, Liu H, Sang C, Liu X, Chen T. Highly bioactive zeolitic imidazolate framework-8–capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci Adv. 2020;6(12):eaay9751. doi:10.1126/sciadv.aay9751
  • Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454(7203):455–462. doi:10.1038/nature07203
  • Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–687. doi:10.1038/nm.3893
  • Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505–522. doi:10.1038/s41569-018-0064-2
  • Simmonds N, Rampton D. Inflammatory bowel disease--a radical view. Gut. 1993;34(7):865. doi:10.1136/gut.34.7.865
  • Qin Z, Li Y, Gu N. Progress in applications of Prussian blue nanoparticles in biomedicine. Adv Healthc Mater. 2018;7(20):1800347. doi:10.1002/adhm.201800347
  • Qiu H, Gong H, Bao Y, Jiang H, Tong W. Reactive oxygen species-scavenging hollow MnO2 nanozymes as carriers to deliver budesonide for synergistic inflammatory bowel disease therapy. Biomater Sci. 2022;10(2):457–466. doi:10.1039/d1bm01525g
  • Zhong G, Yang X, Jiang X, et al. Dopamine-melanin nanoparticles scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy. Nanoscale. 2019;11(24):11605–11616. doi:10.1039/c9nr03060c
  • Kumar S, Adjei IM, Brown SB, Liseth O, Sharma B. Manganese dioxide nanoparticles protect cartilage from inflammation-induced oxidative stress. Biomaterials. 2019;224:119467. doi:10.1016/j.biomaterials.2019.119467
  • Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano. 2018;12(9):8882–8892. doi:10.1021/acsnano.8b04022
  • Zerna C, Thomalla G, Campbell BC, Rha J-H, Hill MD. Current practice and future directions in the diagnosis and acute treatment of ischaemic stroke. The Lancet. 2018;392(10154):1247–1256. doi:10.1016/S0140-6736(18)31874-9
  • Rzigalinski BA, Meehan K, Davis RM, Xu Y, Miles WC, Cohen CA. Radical nanomedicine. Nanomedcine. 2006;1(4):399–412. doi:10.2217/17435889.1.4.399
  • Liu Y, Ai K, Ji X, et al. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J Am Chem Soc. 2017;139(2):856–862. doi:10.1021/jacs.6b11013
  • Huang G, Zang J, He L, et al. Bioactive nanoenzyme reverses oxidative damage and endoplasmic reticulum stress in neurons under ischemic stroke. ACS Nano. 2021. doi:10.1021/acsnano.1c07205
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–356. doi:10.1126/science.1072994
  • Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity—towards improved biomarkers and targeted therapies. Nat Rev Neurol. 2018;14(1):22–39. doi:10.1038/nrneurol.2017.162
  • Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14:450–464. doi:10.1016/j.redox.2017.10.014
  • Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem Rev. 2019;119(2):1221–1322. doi:10.1021/acs.chemrev.8b00138
  • Jenner P. Oxidative stress in Parkinson’s disease. Ann Reurol. 2003;53(S3):S26–S38. doi:10.1002/ana.10483
  • Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature. 1997;388(6645):839–840. doi:10.1038/42166
  • Ma X, Hao J, Wu J, Li Y, Cai X, Zheng Y. Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration. Adv Mater. 2022;34(15):2106723. doi:10.1002/adma.202106723
  • Ni D, Jiang D, Kutyreff CJ, et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat Commun. 2018;9(1):5421. doi:10.1038/s41467-018-07890-8
  • Zhang J, Pei W, Xu Q, Jiang H, Chen J. Desolvation-induced formation of recombinant camel serum albumin-based nanocomposite for glutathione colorimetric determination. Sens Actuators B Che. 2022;1;357.
  • Zhang J, Xu Q, Pei W, et al. Self-assembled recombinant camel serum albumin nanoparticles-encapsulated hemin with peroxidase-like activity for colorimetric detection of hydrogen peroxide and glucose. Int J Biol Macromol. 2021;193:2103–2112. doi:10.1016/j.ijbiomac.2021.11.042
  • Ryan JJ, Bateman HR, Stover A, et al. Fullerene nanomaterials inhibit the allergic response. J Immunol. 2007;179(1):665–672. doi:10.4049/jimmunol.179.1.665
  • Jacevic V, Djordjevic A, Srdjenovic B, et al. Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats. Exp Mol Pathol. 2017;102(2):360–369. doi:10.1016/j.yexmp.2017.03.005
  • Zhao S, Duan H, Yang Y, Yan X, Fan K. Fenozyme protects the integrity of the blood-brain barrier against experimental cerebral malaria. Nano Lett. 2019;19(12):8887–8895. doi:10.1021/acs.nanolett.9b03774
  • Kalashnikova I, Chung SJ, Nafiujjaman M, et al. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics. 2020;10(26):11863–11880. doi:10.7150/thno.49069
  • Bailey ZS, Nilson E, Bates JA, et al. Cerium oxide nanoparticles improve outcome after in vitro and in vivo mild traumatic brain injury. J Neurotrauma. 2020;37(12):1452–1462. doi:10.1089/neu.2016.4644
  • Cheng Y, Cheng C, Yao J, et al. Mn3O4 nanozyme for inflammatory bowel disease therapy. Adv Ther. 2021;4(9). doi:10.1002/adtp.202100081
  • Zhang X, Zhang S, Yang Z, Wang Z, Tian X, Zhou R. Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy. Nanoscale. 2021;13(29):12613–12622. doi:10.1039/d1nr02366g
  • Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm Pharmacol Ther. 2009;22(4):340–349. doi:10.1016/j.pupt.2008.12.015
  • Katsumi H, Fukui K, Sato K, et al. Pharmacokinetics and preventive effects of platinum nanoparticles as reactive oxygen species scavengers on hepatic ischemia/reperfusion injury in mice. Metallomics. 2014;6(5):1050–1056. doi:10.1039/c4mt00018h
  • Zhao H, Zeng Z, Liu L, et al. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale. 2018;10(15):6981–6991. doi:10.1039/c8nr00838h
  • Liu Y, Cheng Y, Zhang H, et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci Adv. 2020;6(29):eabb2695. doi:10.1126/sciadv.abb2695
  • Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357–4412. doi:10.1021/acs.chemrev.8b00672