2,128
Views
12
CrossRef citations to date
0
Altmetric
REVIEW

Vagus Nerve and Underlying Impact on the Gut Microbiota-Brain Axis in Behavior and Neurodegenerative Diseases

, ORCID Icon, , , ORCID Icon, , , , & ORCID Icon show all
Pages 6213-6230 | Received 04 Aug 2022, Accepted 20 Oct 2022, Published online: 09 Nov 2022

References

  • Fulling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: what happens in vagus. Neuron. 2019;101(6):998–1002. doi:10.1016/j.neuron.2019.02.008
  • Morais LH, HLt S, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19(4):241–255. doi:10.1038/s41579-020-00460-0
  • Forsythe P, Kunze W, Bienenstock J. Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? BMC Med. 2016;14:58 doi:10.1186/s12916-016-0604-8.
  • Wang HX, Wang YP. Gut microbiota-brain axis. Chin Med J. 2016;129 (19) :2373–2380. doi:10.4103/0366-6999.190667.
  • Dicks LMT, Hurn D, Hermanus D. Gut bacteria and neuropsychiatric disorders. Microorganisms. 2021;9 (12) :52583. doi:10.3390/microorganisms9122583.
  • Borre YE, O’Keeffe GW, Clarke G, et al. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20 (9) :509–518. doi:10.1016/j.molmed.2014.05.002.
  • Lee Y, Kim YK. Understanding the connection between the gut-brain axis and stress/anxiety disorders. Curr Psychiatry Rep. 2021;23 (5) :22. doi:10.1007/s11920-021-01235-x.
  • Zhu S, Jiang Y, Xu K, et al. The progress of gut microbiome research related to brain disorders. J Neuroinflammation. 2020;17 (1) :25. doi:10.1186/s12974-020-1705-z.
  • Martin-Gallausiaux C, Marinelli L, Blottiere HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc. 2021;80 (1) :37–49. doi:10.1017/S0029665120006916.
  • Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341 (6145) :569–573. doi:10.1126/science.1241165
  • Arrieta MC, Finlay BB. The commensal microbiota drives immune homeostasis. Front Immunol. 2012;3:33. doi:10.3389/fimmu.2012.00033
  • Nishino K, Nishida A, Inoue R, et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J Gastroenterol. 2018;53(1):95–106. doi:10.1007/s00535-017-1384-4
  • Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(1):263–275. doi:10.1113/jphysiol.2004.063388
  • Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16 (8):461–478. doi:10.1038/s41575-019-0157-3.
  • Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–276. doi:10.1016/j.cell.2015.02.047
  • Strandwitz P, Kim KH, Terekhova D, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2019;4(3):396–403. doi:10.1038/s41564-018-0307-3
  • McCusker RH, Kelley KW. Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol. 2013;216(1):84–98. doi:10.1242/jeb.073411
  • Quan N, Banks WA. Brain-immune communication pathways. Brain Behav Immun. 2007;21(6):727–735.. doi:10.1016/j.bbi.2007.05.005
  • Bonaz B, Sinniger V, Pellissier S. The vagus nerve in the neuro-immune axis: implications in the pathology of the gastrointestinal tract. Front Immunol. 2017;8:1452. doi:10.3389/fimmu.2017.01452
  • Altschuler SM, Escardo J, Lynn RB, Miselis RR. The central organization of the vagus nerve innervating the colon of the rat. Gastroenterology. 1993;104(2):502–509. doi:10.1016/0016-5085(93)90419-D
  • Bonaz B, Sinniger V, Pellissier S. Therapeutic potential of vagus nerve stimulation for inflammatory bowel diseases. Front Neurosci. 2021;15:650971. doi:10.3389/fnins.2021.650971
  • Powley TL, Jaffey DM, McAdams J, et al. Vagal innervation of the stomach reassessed: brain-gut connectome uses smart terminals. Ann N Y Acad Sci. 2019;1454(1):14–30. doi:10.1111/nyas.14138
  • Phillips RJ, Powley TL. Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res Rev. 2000;34(1–2):1–26. doi:10.1016/s0165-0173(00)00036-9
  • Kaelberer MM, Buchanan KL, Klein ME, et al. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361(6408):eaat5236. doi:10.1126/science.aat5236
  • Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85 (1–3) :1–17. doi:10.1016/S1566-0702(00)00215-0.
  • Schwartz GJ. Roles for gut vagal sensory signals in determining energy availability and energy expenditure. Brain Res. 2018;1693 (B) :151–153. doi:10.1016/j.brainres.2018.04.004.
  • Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81 (2) :929–969. doi:10.1152/physrev.2001.81.2.929.
  • Rinaman L, Card JP, Schwaber JS, Miselis RR. Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J Neurosci. 1989;9 (6) :1985–1996. doi:10.1523/JNEUROSCI.09-06-01985.
  • Cechetto DF. Central representation of visceral function. Fed Proc. 1987;46 (1) :17–23.
  • Furness JB, Callaghan BP, Rivera LR, Cho HJ. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39–71. doi:10.1007/978-1-4939-0897-4_3.
  • Travagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulating gastric function. Annu Rev Physiol. 2006;68:279–305. doi:10.1146/annurev.physiol.68.040504.094635.
  • Cruz MT, Dezfuli G, Murphy EC, et al. GABAB receptor signaling in the dorsal motor nucleus of the vagus stimulates gastric motility via a cholinergic pathway. Front Neurosci. 2019;13:967. doi:10.3389/fnins.2019.00967.
  • Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry. 2018;9:44. doi:10.3389/fpsyt.2018.00044.
  • Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421 (6921) :384–388. doi:10.1038/nature01339.
  • Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol. 2016;594 (20) :5781–5790. doi:10.1113/JP271539.
  • Kunze WA, Mao YK, Wang B, et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med. 2009;13 (8B) :2261–2270. doi:10.1111/j.1582-4934.2009.00686.x.
  • Mao YK, Kasper DL, Wang B, et al. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun. 2013;4:1465. doi:10.1038/ncomms2478.
  • Wang B, Mao YK, Diorio C, et al. Lactobacillus reuteri ingestion and IK(Ca) channel blockade have similar effects on rat colon motility and myenteric neurones. Neurogastroenterol Motil. 2010;22 (1) :98–107. e133. doi:10.1111/j.1365-2982.2009.01384.x.
  • Lal S, Kirkup AJ, Brunsden AM, Thompson DG, Grundy D. Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol. 2001;281 (4) :G907–915. doi:10.1152/ajpgi.2001.281.4.G907.
  • Jamar G, Ribeiro DA, Pisani LP. High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Crit Rev Food Sci Nutr. 2021;61 (5) :836–854. doi:10.1080/10408398.2020.1747046.
  • de La Serre CB, de Lartigue G, Raybould HE. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiol Behav. 2015;139:188–194. doi:10.1016/j.physbeh.2014.10.032.
  • Schwartz GJ, Plata-Salaman CR, Langhans W. Subdiaphragmatic vagal deafferentation fails to block feeding-suppressive effects of LPS and IL-1 beta in rats. Am J Physiol. 1997;273:R1193–1198. doi:10.1152/ajpregu.1997.273.3.R1193.
  • Hosoi T, Okuma Y, Matsuda T, Nomura Y. Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Auton Neurosci. 2005;120 (1–2) :104–107. doi:10.1016/j.autneu.2004.11.012.
  • Cordero-Morales JF, Gracheva EO, Julius D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc Natl Acad Sci U S A. 2011;108 (46) :E1184–1191. doi:10.1073/pnas.1114124108.
  • Ye L, Bae M, Cassilly CD, et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe. 2021;29 (2) :179–196. e179. doi:10.1016/j.chom.2020.11.011.
  • Strader AD, Woods SC. Gastrointestinal hormones and food intake. Gastroenterology. 2005;128 (1) :175–191. doi:10.1053/j.gastro.2004.10.043.
  • Bellono NW, Bayrer JR, Leitch DB, et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell. 2017;170 (1) :185–198. e116. doi:10.1016/j.cell.2017.05.034.
  • Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008;105 (43) :16767–16772. doi:10.1073/pnas.0808567105.
  • Han W, Tellez LA, Perkins MH, et al. A neural circuit for gut-induced reward. Cell. 2018;175 (3) :665–678. e623. doi:10.1016/j.cell.2018.08.049.
  • Suarez AN, Hsu TM, Liu CM, et al. Gut vagal sensory signaling regulates hippocampus function through multi-order pathways. Nat Commun. 2018;9 (1) :2181. doi:10.1038/s41467-018-04639-1.
  • Wang X, Wang BR, Zhang XJ, et al. Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats. World J Gastroenterol. 2002;8 (3) :540–545. doi:10.3748/wjg.v8.i3.540.
  • Goehler LE, Gaykema RP, Opitz N, et al. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun. 2005;19 (4) :334–344. doi:10.1016/j.bbi.2004.09.002.
  • Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108 (38) :16050–16055. doi:10.1073/pnas.1102999108.
  • Cryan JF, Kaupmann K. Don’t worry ‘B’ happy!: a role for GABA(B) receptors in anxiety and depression. Trends Pharmacol Sci. 2005;26 (1) :36–43. doi:10.1016/j.tips.2004.11.004.
  • Evenseth LSM, Gabrielsen M, The SI. GABAB receptor-structure, ligand binding and drug development. Molecules. 2020;25 (13) :234. doi:10.3390/molecules25133093.
  • Peng L, Morford KL, Levander XA. Benzodiazepines and related sedatives. Med Clin North Am. 2022;106 (1) :113–129. doi:10.1016/j.mcna.2021.08.012.
  • Sgritta M, Dooling SW, Buffington SA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019;101 (2) :246–259. e246. doi:10.1016/j.neuron.2018.11.018.
  • Bercik P, Park AJ, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011;23 (12) :1132–1139. doi:10.1111/j.1365-2982.2011.01796.x.
  • Pearson-Leary J, Zhao C, Bittinger K, et al. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry. 2020;25 (5) :1068–1079. doi:10.1038/s41380-019-0380-x.
  • Liu S, Guo R, Liu F, et al. Gut microbiota regulates depression-like behavior in rats through the neuroendocrine-immune-mitochondrial pathway. Neuropsychiatr Dis Treat. 2020;16:859–869. doi:10.2147/NDT.S243551.
  • Chinna Meyyappan A, Forth E, Wallace CJK, Milev R. Effect of fecal microbiota transplant on symptoms of psychiatric disorders: a systematic review. BMC Psychiatry. 2020;20 (1) :299. doi:10.1186/s12888-020-02654-5.
  • Liddle RA. Parkinson’s disease from the gut. Brain Res. 2018;1693 (Pt B) :201–206. doi:10.1016/j.brainres.2018.01.010.
  • Goedert M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science. 2015;349 (6248) :1255555. doi:10.1126/science.1255555.
  • Braak H, Rub U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm. 2003;110 (5) :517–536. doi:10.1007/s00702-002-0808-2.
  • Hilton D, Stephens M, Kirk L, et al. Accumulation of alpha-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol. 2014;127 (2) :235–241. doi:10.1007/s00401-013-1214-6.
  • Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological alpha-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol. 2016;79 (6) :940–949. doi:10.1002/ana.24648.
  • Lin SY, Lin CL, Wang IK, et al. Dementia and vagotomy in Taiwan: a population-based cohort study. BMJ Open. 2018;8 (3) :e019582. doi:10.1136/bmjopen-2017-019582.
  • Holmqvist S, Chutna O, Bousset L, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 2014;128 (6) :805–820. doi:10.1007/s00401-014-1343-6.
  • Salat-Foix D, Tran K, Ranawaya R, Meddings J, Suchowersky O. Increased intestinal permeability and Parkinson disease patients: chicken or egg? Can J Neurol Sci. 2012;39 (2) :185–188. doi:10.1017/s0317167100013202.
  • Clairembault T, Leclair-Visonneau L, Coron E, et al. Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol Commun. 2015;3:12. doi:10.1186/s40478-015-0196-0.
  • Hill AE, Wade-Martins R, Burnet PWJ. What is our understanding of the influence of gut microbiota on the pathophysiology of Parkinson’s disease? Front Neurosci. 2021;15:708587. doi:10.3389/fnins.2021.708587.
  • Lema Tome CM, Tyson T, Rey NL, et al. Inflammation and alpha-synuclein’s prion-like behavior in Parkinson’s disease--is there a link? Mol Neurobiol. 2013;47 (2) :561–574. doi:10.1007/s12035-012-8267-8.
  • Stolzenberg E, Berry D, Yang DE, et al. A role for neuronal alpha-synuclein in gastrointestinal immunity. J Innate Immun. 2017;9 (5) :456–463. doi:10.1159/000477990.
  • Lionnet A, Leclair-Visonneau L, Neunlist M, et al. Does Parkinson’s disease start in the gut? Acta Neuropathol. 2018;135 (1) :1–12. doi:10.1007/s00401-017-1777-8.
  • Santos SF, de Oliveira HL, Yamada ES, Neves BC, Pereira A Jr. The Gut and Parkinson’s disease-A bidirectional pathway. Front Neurol. 2019;10:574. doi:10.3389/fneur.2019.00574.
  • Chen SG, Stribinskis V, Rane MJ, et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci Rep. 2016;6:34477. doi:10.1038/srep34477.
  • Chandra R, Hiniker A, Kuo YM, Nussbaum RL, Liddle RA. alpha-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight. 2017;2 (12) :e92295. doi:10.1172/jci.insight.92295.
  • Arotcarena ML, Dovero S, Prigent A, et al. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain. 2020;143 (5) :1462–1475. doi:10.1093/brain/awaa096.
  • Van Den Berge N, Ferreira N, Gram H, et al. Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol. 2019;138 (4) :535–550. doi:10.1007/s00401-019-02040-w.
  • Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397 (10284) :1577–1590. doi:10.1016/S0140-6736(20)32205-4.
  • Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut microbiota and dysbiosis in Alzheimer’s disease: implications for pathogenesis and treatment. Mol Neurobiol. 2020;57 (12) :5026–5043. doi:10.1007/s12035-020-02073-3.
  • Goyal D, Ali SA, Singh RK. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2021;106:110112. doi:10.1016/j.pnpbp.2020.110112.
  • Asti A, Gioglio L. Can a bacterial endotoxin be a key factor in the kinetics of amyloid fibril formation? J Alzheimers Dis. 2014;39 (1) :169–179. doi:10.3233/JAD-131394.
  • Lee KE, Kim JK, Han SK, et al. The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment. Microbiome. 2020;8 (1) :107. doi:10.1186/s40168-020-00881-2.
  • Calderon-Garciduenas L, Solt AC, Henriquez-Roldan C, et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol. 2008;36 (2) :289–310. doi:10.1177/0192623307313011.
  • Calderon-Garciduenas L, Reynoso-Robles R, Perez-Guille B, Mukherjee PS, Gonzalez-Maciel A. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents. Environ Res. 2017;159:186–201. doi:10.1016/j.envres.2017.08.008.
  • Kish L, Hotte N, Kaplan GG, et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One. 2013;8 (4) :e62220. doi:10.1371/journal.pone.0062220.
  • Yogi-Morren D, Galioto R, Strandjord SE, et al. Duration of type 2 diabetes and very low density lipoprotein levels are associated with cognitive dysfunction in metabolic syndrome. Cardiovasc Psychiatry Neurol. 2014;2014:656341. doi:10.1155/2014/656341.
  • Hossain MS, Oomura Y, Fujino T, Akashi K. Glucose signaling in the brain and periphery to memory. Neurosci Biobehav Rev. 2020;110:100–113. doi:10.1016/j.neubiorev.2019.03.018.
  • Fang X. Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis. Int J Neurosci. 2016;126 (9) :771–776. doi:10.3109/00207454.2015.1096271.
  • Zeng Q, Shen J, Chen K, et al. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci Rep. 2020;10 (1) :12998. doi:10.1038/s41598-020-69845-8.
  • Figueroa-Romero C, Guo K, Murdock BJ, et al. Temporal evolution of the microbiome, immune system and epigenome with disease progression in ALS mice. Dis Model Mech. 2019;13 (2) :32. doi:10.1242/dmm.041947.
  • Bataveljic D, Milosevic M, Radenovic L, Andjus P. Novel molecular biomarkers at the blood-brain barrier in ALS. Biomed Res Int. 2014;2014:907545. doi:10.1155/2014/907545.
  • Holzapfel K, Naumann M. Ultrasound detection of vagus nerve atrophy in bulbar amyotrophic lateral sclerosis. J Neuroimaging. 2020;30 (6) :762–765. doi:10.1111/jon.12761.
  • Tawfik EA. Vagus nerve ultrasound in a patient with amyotrophic lateral sclerosis. Muscle Nerve. 2016;54 (5) :978–979. doi:10.1002/mus.25126.
  • Liu RT, Rowan-Nash AD, Sheehan AE, et al. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav Immun. 2020;88:308–324. doi:10.1016/j.bbi.2020.03.026.
  • Jiang HY, Zhang X, Yu ZH, et al. Altered gut microbiota profile in patients with generalized anxiety disorder. J Psychiatr Res. 2018;104:130–136. doi:10.1016/j.jpsychires.2018.07.007.
  • Strati F, Cavalieri D, Albanese D, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5 (1) :24. doi:10.1186/s40168-017-0242-1.
  • Hill-Burns EM, Debelius JW, Morton JT, et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord. 2017;32 (5) :739–749. doi:10.1002/mds.26942.
  • Zhuang ZQ, Shen LL, Li WW, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis. 2018;63(4):1337–1346. doi:10.3233/JAD-180176