103
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Construction of Autophagy-Related Gene Classifier for Early Diagnosis, Prognosis and Predicting Immune Microenvironment Features in Sepsis by Machine Learning Algorithms

ORCID Icon, , ORCID Icon, , , & show all
Pages 6165-6186 | Received 18 Aug 2022, Accepted 01 Nov 2022, Published online: 08 Nov 2022

References

  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–810. doi:10.1001/jama.2016.0287
  • Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study. Lancet. 2020;395(10219):200–211. doi:10.1016/S0140-6736(19)32989-7
  • Ferrer R, Martin-Loeches I, Phillips G, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med. 2014;42(8):1749–1755. doi:10.1097/CCM.0000000000000330
  • Beltrán-García J, Osca-Verdegal R, Romá-Mateo C, et al. Epigenetic biomarkers for human sepsis and septic shock: insights from immunosuppression. Epigenomics. 2020;12(7):617–646. doi:10.2217/epi-2019-0329
  • Barichello T, Generoso JS, Singer M, et al. Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit Care. 2022;26(1):14. doi:10.1186/s13054-021-03862-5
  • Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–364. doi:10.1038/s41580-018-0003-4
  • Feng Y, Liu B, Zheng X, et al. The protective role of autophagy in sepsis. Microb Pathog. 2019;131:106–111. doi:10.1016/j.micpath.2019.03.039
  • Park SY, Shrestha S, Youn YJ, et al. Autophagy primes neutrophils for neutrophil extracellular trap formation during sepsis. Am J Respir Crit Care Med. 2017;196(5):577–589. doi:10.1164/rccm.201603-0596OC
  • Neumann Y, Bruns SA, Rohde M, et al. Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase. Autophagy. 2016;12(11):2069–2084. doi:10.1080/15548627.2016.1226732
  • Oami T, Watanabe E, Hatano M, et al. Suppression of T cell autophagy results in decreased viability and function of T cells through accelerated apoptosis in a murine sepsis model. Crit Care Med. 2017;45(1):e77–e85. doi:10.1097/CCM.0000000000002016
  • He S, Deng Z, Li Z, et al. Signatures of 4 autophagy-related genes as diagnostic markers of MDD and their correlation with immune infiltration. J Affect Disord. 2021;295:11–20. doi:10.1016/j.jad.2021.08.005
  • Lu TP, Tsai MH, Lee JM, et al. Identification of a novel biomarker, SEMA5A, for non-small cell lung carcinoma in nonsmoking women. Cancer Epidemiol Biomarkers Prev. 2010;19(10):2590–2597. doi:10.1158/1055-9965.EPI-10-0332
  • Shimizu H, Nakayama KI. A 23 gene-based molecular prognostic score precisely predicts overall survival of breast cancer patients. EBioMedicine. 2019;46:150–159. doi:10.1016/j.ebiom.2019.07.046
  • Chen Z, Chen R, Ou Y, et al. Construction of an HLA classifier for early diagnosis, prognosis, and recognition of immunosuppression in sepsis by multiple transcriptome datasets. Front Physiol. 2022;13:870657. doi:10.3389/fphys.2022.870657
  • Lu J, Chen R, Ou Y, et al. Characterization of immune-related genes and immune infiltration features for early diagnosis, prognosis and recognition of immunosuppression in sepsis. Int Immunopharmacol. 2022;107:108650. doi:10.1016/j.intimp.2022.108650
  • Pena OM, Hancock DG, Lyle NH, et al. An endotoxin tolerance signature predicts sepsis and organ dysfunction at initial clinical presentation. EBioMedicine. 2014;1(1):64–71. doi:10.1016/j.ebiom.2014.10.003
  • Davenport EE, Burnham KL, Radhakrishnan J, et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med. 2016;4(4):259–271. doi:10.1016/S2213-2600(16)00046-1
  • Scicluna BP, van Vught LA, Zwinderman AH, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med. 2017;5(10):816–826. doi:10.1016/S2213-2600(17)30294-1
  • Sweeney TE, Azad TD, Donato M, et al. Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit Care Med. 2018;46(6):915–925. doi:10.1097/CCM.0000000000003084
  • Lukaszewski RA, Jones HE, Gersuk VH, et al. Presymptomatic diagnosis of postoperative infection and sepsis using gene expression signatures [published online ahead of print, 2022 Jul 13]. Intensive Care Med. 2022;48(9):1133–1143. doi:10.1007/s00134-022-06769-z
  • Beam AL, Kohane IS, Data B. Machine learning in health care. JAMA. 2018;319(13):1317–1318. doi:10.1001/jama.2017.18391
  • Shankar-Hari M, Datta D, Wilson J, et al. Early PREdiction of sepsis using leukocyte surface biomarkers: the ExPRES-sepsis cohort study. Intensive Care Med. 2018;44(11):1836–1848. doi:10.1007/s00134-018-5389-0
  • Banerjee S, Mohammed A, Wong HR, Palaniyar N, Kamaleswaran R. Machine learning identifies complicated sepsis course and subsequent mortality based on 20 genes in peripheral blood immune cells at 24 H post-ICU admission. Front Immunol. 2021;12:592303. doi:10.3389/fimmu.2021.592303
  • Baniasadi A, Rezaeirad S, Zare H, et al. Two-step imputation and adaboost-based classification for early prediction of sepsis on imbalanced clinical data. Crit Care Med. 2021;49(1):e91–e97. doi:10.1097/CCM.0000000000004705
  • Jensen JU, Bouadma L. Why biomarkers failed in sepsis. Intensive Care Med. 2016;42(12):2049–2051. doi:10.1007/s00134-016-4531-0
  • Kumar V. T cells and their immunometabolism: a novel way to understanding sepsis immunopathogenesis and future therapeutics. Eur J Cell Biol. 2018;97(6):379–392. doi:10.1016/j.ejcb.2018.05.001
  • Cheng Z, Abrams ST, Toh J, et al. The critical roles and mechanisms of immune cell death in sepsis. Front Immunol. 2020;11:1918. doi:10.3389/fimmu.2020.01918
  • Tang D, Wang H, Billiar TR, et al. Emerging mechanisms of immunocoagulation in sepsis and septic shock. Trends Immunol. 2021;42(6):508–522. doi:10.1016/j.it.2021.04.001
  • Ryan TAJ, O’Neill LAJ. Innate immune signaling and immunothrombosis: new insights and therapeutic opportunities. Eur J Immunol. 2022;52(7):1024–1034. doi:10.1002/eji.202149410
  • Yao YM, Osuchowski MF, Wang JH, et al. Editorial: immune dysfunction: an update of new immune cell subsets and cytokines in sepsis. Front Immunol. 2021;12:822068. doi:10.3389/fimmu.2021.822068