112
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Special Focus on the Cellular Anti-Inflammatory Effects of Several Micro-Immunotherapy Formulations: Considerations Regarding Intestinal-, Immune-Axis-Related- and Neuronal-Inflammation Contexts

ORCID Icon & ORCID Icon
Pages 6695-6717 | Received 19 Sep 2022, Accepted 24 Nov 2022, Published online: 13 Dec 2022

References

  • Pahwa R, Goyal A, Jialal I. Chronic Inflammation. In: StatPearls. StatPearls Publishing; 2022.
  • Wu R-Q, Zhang D-F, Tu E, Chen Q-M, Chen W. The mucosal immune system in the oral cavity—an orchestra of T cell diversity. Int J Oral Sci. 2014;6:125–132. doi:10.1038/ijos.2014.48
  • Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–685. doi:10.1038/nri3738
  • Floris I, García-González V, Palomares B, Appel K, Lejeune B. The micro-immunotherapy medicine 2LARTH® reduces inflammation and symptoms of rheumatoid arthritis in vivo. Int J Rheumatol. 2020;2020:1594573. doi:10.1155/2020/1594573
  • Floris I, Chenuet P, Togbe D, Volteau C, Lejeune B. Potential role of the micro-immunotherapy medicine 2LALERG in the treatment of pollen-induced allergic inflammation. Dose-Response Publ Int Hormesis Soc. 2020;18:1559325820914092.
  • Jacques C, Chatelais M, Fekir K, et al. The micro-immunotherapy medicine 2LEID exhibits an immunostimulant effect by boosting both innate and adaptive immune responses. Int J Mol Sci. 2022;23:110. doi:10.3390/ijms23010110
  • Jacques C, Chatelais M, Fekir K, Brulefert A, Floris I. The unitary micro-immunotherapy medicine interferon-γ (4 CH) displays similar immunostimulatory and immunomodulatory effects than those of biologically active human interferon-γ on various cell types. Int J Mol Sci. 2022;23:2314. doi:10.3390/ijms23042314
  • Decker M-L, Gotta V, Wellmann S, Ritz N. Cytokine profiling in healthy children shows association of age with cytokine concentrations. Sci Rep. 2017;7:17842. doi:10.1038/s41598-017-17865-2
  • Floris I, Rose T, Rojas JA, et al. Pro-inflammatory cytokines at ultra-low dose exert anti-inflammatory effect in vitro, A possible mode of action involving sub-micron particles? Dose-Response Publ Int Hormesis Soc. 2020;18:1559325820961723.
  • Floris I, Appel K, Rose T, Lejeune B. 2LARTH®, a micro-immunotherapy medicine, exerts anti-inflammatory effects in vitro and reduces TNF-α and IL-1β secretion. J Inflamm Res. 2018;11:397–405. doi:10.2147/JIR.S174326
  • Jacques C, Floris I, Lejeune B. Ultra-low dose cytokines in rheumatoid arthritis, three birds with one stone as the rationale of the 2LARTH® micro-immunotherapy treatment. Int J Mol Sci. 2021;22:6717. doi:10.3390/ijms22136717
  • Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammation-nature’s way to efficiently respond to all types of challenges. Implications for understanding and managing ‘the epidemic’ of chronic diseases. Front Med. 2018;5:316.
  • Jacobson A, Yang D, Vella M, Chiu IM. The intestinal neuro-immune axis, crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 2021;14:555–565. doi:10.1038/s41385-020-00368-1
  • Cotton JA, Platnich JM, Muruve DA, et al. Interleukin-8 in gastrointestinal inflammation and malignancy, induction and clinical consequences. Int J Interferon Cytokine Mediat Res. 2016;8:13–34.
  • Kumar S, Shukla R, Ranjan P, Kumar A. Interleukin-10, A compelling therapeutic target in patients with irritable bowel syndrome. Clin Ther. 2017;39:632–643. doi:10.1016/j.clinthera.2017.01.030
  • Tsuge K, Inazumi T, Shimamoto A, Sugimoto Y. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. Int Immunol. 2019;31:597–606. doi:10.1093/intimm/dxz021
  • Couper KN, Blount DG, Riley EM. IL-10, the master regulator of immunity to infection. J Immunol. 2008;180:5771–5777. doi:10.4049/jimmunol.180.9.5771
  • Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012;32:23–63. doi:10.1615/CritRevImmunol.v32.i1.30
  • Li MO, Flavell RA. Contextual regulation of inflammation, a duet by transforming growth factor-β and interleukin-10. Immunity. 2008;28:468–476. doi:10.1016/j.immuni.2008.03.003
  • Dinarello CA, Simon A, van der Meer JWM. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11:633–652. doi:10.1038/nrd3800
  • Richards CD. The enigmatic cytokine oncostatin M and roles in disease. ISRN Inflamm. 2013;2013:e512103. doi:10.1155/2013/512103
  • Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33:127–148. doi:10.1093/intimm/dxaa078
  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295. doi:10.1101/cshperspect.a016295
  • Seyfizadeh N, Seyfizadeh N, Gharibi T, Babaloo Z. Interleukin-13 as an important cytokine, A review on its roles in some human diseases. Acta Microbiol Immunol Hung. 2015;62:341–378. doi:10.1556/030.62.2015.4.2
  • Valkanova V, Ebmeier KP, Allan CLCRP. IL-6 and depression, a systematic review and meta-analysis of longitudinal studies. J Affect Disord. 2013;150:736–744. doi:10.1016/j.jad.2013.06.004
  • Kim Y-K, Suh I-B, Kim H, et al. The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania, effects of psychotropic drugs. Mol Psychiatry. 2002;7:1107–1114. doi:10.1038/sj.mp.4001084
  • Park H-J, Shim H-S, An K, et al. IL-4 Inhibits IL-1 β -induced depressive-like behavior and central neurotransmitter alterations. Mediators Inflamm. 2015;2015:941413. doi:10.1155/2015/941413
  • Singer CA, Figueroa-Masot XA, Batchelor RH, Dorsa DM. The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons. J Neurosci off J Soc Neurosci. 1999;19:2455–2463. doi:10.1523/JNEUROSCI.19-07-02455.1999
  • Gresa-Arribas N, Viéitez C, Dentesano G, et al. Modelling neuroinflammation in vitro, a tool to test the potential neuroprotective effect of anti-inflammatory agents. PLoS One. 2012;7:e45227. doi:10.1371/journal.pone.0045227
  • Kim I-D, Lee J-K. HMGB1-binding heptamer confers anti-inflammatory effects in primary microglia culture. Exp Neurobiol. 2013;22:301–307. doi:10.5607/en.2013.22.4.301
  • Shu Z, Yang B, Zhao H, et al. Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells. Int Immunopharmacol. 2014;19:275–282. doi:10.1016/j.intimp.2014.01.011
  • Vaux DL. Research methods, Know when your numbers are significant. Nature. 2012;492:180–181. doi:10.1038/492180a
  • Friedrich M, Pohin M, Powrie F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity. 2019;50:992–1006. doi:10.1016/j.immuni.2019.03.017
  • Lin Z, Huang Y, Jiang H, et al. Functional differences and similarities in activated peripheral blood mononuclear cells by lipopolysaccharide or phytohemagglutinin stimulation between human and cynomolgus monkeys. Ann Transl Med. 2021;9:257. doi:10.21037/atm-20-4548
  • Saeedi BJ, Kao DJ, Kitzenberg DA, et al. HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity. Mol Biol Cell. 2015;26:2252–2262.
  • Popa C, Netea MG, Van Riel PL, Van Der Meer JW, Stalenhoef AF. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 2007;48:751–762. doi:10.1194/jlr.R600021-JLR200
  • van der Bruggen T, Nijenhuis S, van Raaij E, Verhoef J, Sweder van Asbeck B. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the Raf-1/MEK1-MEK2/ERK1-ERK2 Pathway. Infect Immun. 1999;67:3824–3829. doi:10.1128/IAI.67.8.3824-3829.1999
  • Lu Y, Wahl LM. Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-κB activity in lipopolysaccharide-activated human primary monocytes. J Immunol. 2005;175:5423–5429. doi:10.4049/jimmunol.175.8.5423
  • Liu X, Yin S, Chen Y, et al. LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation. Mol Med Rep. 2018;17:5484–5491. doi:10.3892/mmr.2018.8542
  • Rana P, Bagewadi H, Banerjee BD, Bhattacharya SK, Mediratta PK. Attenuation of oxidative stress and neurotoxicity involved in the antidepressant-like effect of the MK-801(dizocilpine) in bacillus Calmette-Guerin-induced depression in mice. J Basic Clin Physiol Pharmacol. 2020;31. doi:10.1515/jbcpp-2019-0016
  • Collett A, Sims E, Walker D, et al. Comparison of HT29-18-C1 and Caco-2 cell lines as models for studying intestinal paracellular drug absorption. Pharm Res. 1996;13:216–221. doi:10.1023/A:1016082829111
  • Martínez-Maqueda D, Miralles B, Recio I. HT29 Cell Line. in the Impact of Food Bioactives on Health, in vitro and ex vivo Models. eds. Verhoeckx K. Springer International Publishing; 2015:113–124. doi:10.1007/978-3-319-16104-4_11
  • Eckmann L, Jung HC, Schürer-Maly C, et al. Differential cytokine expression by human intestinal epithelial cell lines, regulated expression of interleukin 8. Gastroenterology. 1993;105:1689–1697. doi:10.1016/0016-5085(93)91064-O
  • Neels JG, Pandey M, Hotamisligil GS, Samad F. Autoamplification of tumor necrosis factor-α. Am J Pathol. 2006;168:435–444. doi:10.2353/ajpath.2006.050699
  • Andrews C, McLean MH, Durum SK. Cytokine Tuning of Intestinal Epithelial Function. Front Immunol. 2018;9:1270. doi:10.3389/fimmu.2018.01270
  • Kominsky DJ, Campbell EL, Ehrentraut SF, et al. IFN-γ-mediated induction of an apical IL-10 receptor on polarized intestinal epithelia. J Immunol Baltim Md. 2014;192:1267–1276.
  • Lorén V, Cabré E, Ojanguren I, et al. Interleukin-10 enhances the intestinal epithelial barrier in the presence of corticosteroids through p38 MAPK activity in caco-2 monolayers, A possible mechanism for steroid responsiveness in ulcerative colitis. PLoS One. 2015;10:e0130921. doi:10.1371/journal.pone.0130921
  • Zheng L, Kelly CJ, Battista KD, et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J Immunol Baltim Md. 2017;199:2976–2984.
  • Gitter AH, Bendfeldt K, Schmitz H, et al. Epithelial barrier defects in HT-29/B6 colonic cell monolayers induced by tumor necrosis factor-alpha. Ann N Y Acad Sci. 2000;915:193–203. doi:10.1111/j.1749-6632.2000.tb05242.x
  • Al-Sadi RM, Ma TY. IL-1β causes an increase in intestinal epithelial tight junction permeability. J Immunol Baltim Md. 2007;178:4641–4649.
  • McLean MH, Neurath MF, Durum SK. Targeting interleukins for the treatment of inflammatory bowel disease—what lies beyond anti-TNF therapy? Inflamm Bowel Dis. 2014;20:389–397. doi:10.1097/01.MIB.0000437616.37000.41
  • Ye X, Sun M. AGR2 ameliorates tumor necrosis factor-α-induced epithelial barrier dysfunction via suppression of NF-κB p65-mediated MLCK/p-MLC pathway activation. Int J Mol Med. 2017;39:1206–1214. doi:10.3892/ijmm.2017.2928
  • Maria-Ferreira D, Nascimento AM, Cipriani TR, et al. Rhamnogalacturonan, a chemically-defined polysaccharide, improves intestinal barrier function in DSS-induced colitis in mice and human Caco-2 cells. Sci Rep. 2018;8:12261. doi:10.1038/s41598-018-30526-2
  • Yu H, Huang X, Ma Y, et al. Interleukin-8 regulates endothelial permeability by down-regulation of tight junction but not dependent on integrins induced focal adhesions. Int J Biol Sci. 2013;9:966–979. doi:10.7150/ijbs.6996
  • Mazzon E, Puzzolo D, Caputi AP, Cuzzocrea S. Role of IL-10 in hepatocyte tight junction alteration in mouse model of experimental colitis. Mol Med. 2002;8:353–366. doi:10.1007/BF03402016
  • Kontoyiannis D, Boulougouris G, Manoloukos M, et al. Genetic dissection of the cellular pathways and signaling mechanisms in modeled tumor necrosis factor-induced Crohn’s-like inflammatory bowel disease. J Exp Med. 2002;196:1563–1574. doi:10.1084/jem.20020281
  • Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol Baltim Md. 2012;188:21–28.
  • Sheibanie AF, Yen JH, Khayrullina T, et al. The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23-->IL-17 axis. J Immunol Baltim Md. 2007;178:8138–8147.
  • Bethea JR, Gillespie GY, Benveniste EN. Interleukin-1β induction of TNF-α gene expression, Involvement of protein kinase C. J Cell Physiol. 1992;152:264–273. doi:10.1002/jcp.1041520207
  • Park Y-G, Kang SK, Noh SH, et al. PGE2 induces IL-1beta gene expression in mouse osteoblasts through a cAMP-PKA signaling pathway. Int Immunopharmacol. 2004;4:779–789.
  • Kusugami K, Fukatsu A, Tanimoto M, et al. Elevation of interleukin-6 in inflammatory bowel disease is macrophage- and epithelial cell-dependent. Dig Dis Sci. 1995;40:949–959. doi:10.1007/BF02064182
  • Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8:S3. doi:10.1186/ar1917
  • Mizuno T, Zhang G, Takeuchi H, et al. Interferon-γ directly induces neurotoxicity through a neuron specific, calcium-permeable complex of IFN-γ receptor and AMPA GluRl receptor. FASEB J. 2008;22:1797–1806. doi:10.1096/fj.07-099499
  • Yu Z, Cheng G, Wen X, et al. Tumor necrosis factor alpha increases neuronal vulnerability to excitotoxic necrosis by inducing expression of the AMPA-glutamate receptor subunit GluR1 via an acid sphingomyelinase- and NF-kappaB-dependent mechanism. Neurobiol Dis. 2002;11:199–213. doi:10.1006/nbdi.2002.0530
  • Jana M, Dasgupta S, Saha RN, Liu X, Pahan K. Induction of tumor necrosis factor-α (TNF-α) by interleukin-12 p40 monomer and homodimer in microglia and macrophages. J Neurochem. 2003;86:519–528. doi:10.1046/j.1471-4159.2003.01864.x
  • Vanderwall AG, Milligan ED. Cytokines in pain, harnessing endogenous anti-inflammatory signaling for improved pain management. Front Immunol. 2019;10:3009.
  • Treede R-D, Rief W, Barke A, et al. Chronic pain as a symptom or a disease, the IASP classification of chronic pain for the international classification of diseases (ICD-11). PAIN. 2019;160:19–27. doi:10.1097/j.pain.0000000000001384
  • Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017;46:927–942. doi:10.1016/j.immuni.2017.06.008
  • Scholz J, Woolf CJ. The neuropathic pain triad, neurons, immune cells and glia. Nat Neurosci. 2007;10:1361–1368. doi:10.1038/nn1992
  • Hess A, Roesch J, Saake M, et al. Functional brain imaging reveals rapid blockade of abdominal pain response upon anti-TNF therapy in crohn’s disease. Gastroenterology. 2015;149:864–866. doi:10.1053/j.gastro.2015.05.063
  • Song D, Li Y, Tang D, Huang L, Yuan Y. Neuron-glial communication mediated by TNF-α and glial activation in dorsal root ganglia in visceral inflammatory hypersensitivity. Am J Physiol Gastrointest Liver Physiol. 2014;306:G788–795. doi:10.1152/ajpgi.00318.2013
  • Villarán RF, Espinosa-Oliva AM, Sarmiento M, et al. Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system, potential risk factor in Parkinson`s disease. J Neurochem. 2010;114:1687–1700. doi:10.1111/j.1471-4159.2010.06879.x
  • Koopman FA, Chavan SS, Miljko S, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113:8284–8289. doi:10.1073/pnas.1605635113
  • Walker AK, Kavelaars A, Heijnen CJ, Dantzer R. Neuroinflammation and Comorbidity of Pain and Depression. Pharmacol Rev. 2014;66:80–101. doi:10.1124/pr.113.008144
  • Connor TJ, Song C, Leonard BE, Merali Z, Anisman H. An assessment of the effects of central interleukin-1β, −2, −6, and tumor necrosis factor-α administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience. 1998;84(3):923–933. doi:10.1016/S0306-4522(97)00533-2