175
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

The Immunomodulatory Functions of BTK Inhibition in the Central Nervous System

ORCID Icon, ORCID Icon & ORCID Icon
Pages 6427-6438 | Received 16 Sep 2022, Accepted 15 Nov 2022, Published online: 24 Nov 2022

References

  • Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9(6):722–728. doi:10.1542/peds.9.6.722
  • Tsukada S, Saffran DC, Rawlings DJ, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72(2):279–290. doi:10.1016/0092-8674(93)90667-F
  • Khan WN, Alt FW, Gerstein RM, et al. Defective B cell development and function in Btk-deficient mice. Immunity. 1995;3(3):283–299. doi:10.1016/1074-7613(95)90114-0
  • Rawlings DJ, Saffran DC, Tsukada S, et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science. 1993;261(5119):358–361. doi:10.1126/science.8332901
  • Liang C, Tian D, Ren X, et al. The development of Bruton’s tyrosine kinase (BTK) inhibitors from 2012 to 2017: a mini-review. Eur J Med Chem. 2018;151:315–326. doi:10.1016/j.ejmech.2018.03.062
  • Zhu S, Gokhale S, Jung J, et al. Multifaceted Immunomodulatory Effects of the BTK inhibitors ibrutinib and acalabrutinib on different immune cell subsets - beyond B lymphocytes. Front Cell Dev Biol. 2021;9:727531. doi:10.3389/fcell.2021.727531
  • McDonald C, Xanthopoulos C, Kostareli E. The role of Bruton’s tyrosine kinase in the immune system and disease. Immunology. 2021;164(4):722–736. doi:10.1111/imm.13416
  • Yu CG, Bondada V, Iqbal H, et al. Inhibition of Bruton tyrosine kinase reduces neuroimmune cascade and promotes recovery after spinal cord injury. Int J Mol Sci. 2021;23:1. doi:10.3390/ijms23010355
  • Keaney J, Gasser J, Gillet G, Scholz D, Kadiu I. Inhibition of Bruton’s tyrosine kinase modulates microglial phagocytosis: therapeutic implications for alzheimer’s disease. J Neuroimmune Pharmacol. 2019;14(3):448–461. doi:10.1007/s11481-019-09839-0
  • Zarrin AA, Bao K, Lupardus P, Vucic D. Kinase inhibition in autoimmunity and inflammation. Nat Rev Drug Discov. 2021;20(1):39–63. doi:10.1038/s41573-020-0082-8
  • Zhang D, Gong H, Meng F. Recent advances in BTK inhibitors for the treatment of inflammatory and autoimmune diseases. Molecules. 2021;26:16.
  • Hirsch EC, Standaert DG. Ten unsolved questions about neuroinflammation in parkinson’s disease. Mov Disord. 2021;36(1):16–24. doi:10.1002/mds.28075
  • Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–172. doi:10.1038/s41582-020-00435-y
  • Corneth OBJ, Klein Wolterink RGJ, Hendriks RW. BTK Signaling in B cell differentiation and autoimmunity. Curr Top Microbiol Immunol. 2016;393:67–105.
  • Gu D, Tang H, Wu J, Li J, Miao Y. Targeting Bruton tyrosine kinase using non-covalent inhibitors in B cell malignancies. J Hematol Oncol. 2021;14(1):40. doi:10.1186/s13045-021-01049-7
  • Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer. 2018;17(1):57. doi:10.1186/s12943-018-0779-z
  • Burger JA. Bruton Tyrosine Kinase Inhibitors: present and Future. Cancer J. 2019;25(6):386–393. doi:10.1097/PPO.0000000000000412
  • Goldwirt L, Beccaria K, Ple A, Sauvageon H, Mourah S. Ibrutinib brain distribution: a preclinical study. Cancer Chemother Pharmacol. 2018;81(4):783–789. doi:10.1007/s00280-018-3546-3
  • Zain R, Vihinen M. Structure-function relationships of covalent and non-covalent BTK Inhibitors. Front Immunol. 2021;12:694853. doi:10.3389/fimmu.2021.694853
  • Liu J, Chen C, Wang D, Zhang J, Zhang T. Emerging small-molecule inhibitors of the Bruton’s tyrosine kinase (BTK): current development. Eur J Med Chem. 2021;217:113329. doi:10.1016/j.ejmech.2021.113329
  • Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–2294. doi:10.1056/NEJMoa1400029
  • Amin NA, Balasubramanian S, Saiya-Cork K, Shedden K, Hu N, Malek SN. Cell-intrinsic determinants of ibrutinib-induced apoptosis in chronic lymphocytic leukemia. Clin Cancer Res. 2017;23(4):1049–1059. doi:10.1158/1078-0432.CCR-15-2921
  • Robert C, Soria J-C, Spatz A, et al. Cutaneous side-effects of kinase inhibitors and blocking antibodies. Lancet Oncol. 2005;6(7):491–500. doi:10.1016/S1470-2045(05)70243-6
  • Dubovsky JA, Beckwith KA, Natarajan G, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–2549. doi:10.1182/blood-2013-06-507947
  • Xiao L, Salem JE, Clauss S, et al. Ibrutinib-mediated atrial fibrillation attributable to inhibition of C-terminal src kinase. Circulation. 2020;142(25):2443–2455. doi:10.1161/CIRCULATIONAHA.120.049210
  • Zimmerman SM, Peer CJ, Figg WD. Ibrutinib’s off-target mechanism: cause for dose optimization. Cancer Biol Ther. 2021;22(10–12):529–531. doi:10.1080/15384047.2021.1980313
  • Barf T, Covey T, Izumi R, et al. Acalabrutinib (ACP-196): a Covalent Bruton Tyrosine Kinase Inhibitor with a Differentiated Selectivity and In Vivo Potency Profile. J Pharmacol Exp Ther. 2017;363(2):240–252. doi:10.1124/jpet.117.242909
  • Syed YY. Zanubrutinib: first Approval. Drugs. 2020;80(1):91–97. doi:10.1007/s40265-019-01252-4
  • Ghia P, Pluta A, Wach M, et al. ASCEND: phase III, randomized trial of acalabrutinib versus idelalisib plus rituximab or bendamustine plus rituximab in relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2020;38(25):2849–2861. doi:10.1200/JCO.19.03355
  • Dhillon S. Tirabrutinib: first Approval. Drugs. 2020;80(8):835–840. doi:10.1007/s40265-020-01318-8
  • Dhillon S. Orelabrutinib: first Approval. Drugs. 2021;81(4):503–507. doi:10.1007/s40265-021-01482-5
  • Robak T, Witkowska M, Smolewski P. The role of Bruton’s kinase inhibitors in chronic lymphocytic leukemia: current status and future directions. Cancers. 2022;14:3. doi:10.3390/cancers14030771
  • Tasso B, Spallarossa A, Russo E, Brullo C. The development of BTK inhibitors: a five-year update. Molecules. 2021;26:23. doi:10.3390/molecules26237411
  • Isenberg D, Furie R, Jones NS, et al. Efficacy, safety, and pharmacodynamic effects of the Bruton’s tyrosine kinase inhibitor fenebrutinib (GDC-0853) in systemic lupus erythematosus: results of a phase II, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2021;73(10):1835–1846. doi:10.1002/art.41811
  • Kuter DJ, Efraim M, Mayer J, et al. Rilzabrutinib, an Oral BTK Inhibitor, in Immune Thrombocytopenia. N Engl J Med. 2022;386(15):1421–1431. doi:10.1056/NEJMoa2110297
  • Rolli V, Gallwitz M, Wossning T, et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell. 2002;10(5):1057–1069. doi:10.1016/S1097-2765(02)00739-6
  • Saito K, Scharenberg AM, Kinet JP. Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem. 2001;276(19):16201–16206. doi:10.1074/jbc.M100873200
  • Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044–1066. doi:10.1016/j.cell.2020.02.041
  • Jefferies CA, Doyle S, Brunner C, et al. Bruton’s tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem. 2003;278(28):26258–26264. doi:10.1074/jbc.M301484200
  • Morbach H, Schickel J-N, Cunningham-Rundles C, et al. CD19 controls Toll-like receptor 9 responses in human B cells. J Allergy Clin Immunol. 2016;137:3. doi:10.1016/j.jaci.2015.08.040
  • Corzo CA, Varfolomeev E, Setiadi AF, et al. The kinase IRAK4 promotes endosomal TLR and immune complex signaling in B cells and plasmacytoid dendritic cells. Sci Signal. 2020;13:634. doi:10.1126/scisignal.aaz1053
  • Tampella G, Kerns HM, Niu D, et al. The tec kinase-regulated phosphoproteome reveals a mechanism for the regulation of inhibitory signals in murine macrophages. J Immunol. 2015;195(1):246–256. doi:10.4049/jimmunol.1403238
  • Schmidt NW, Thieu VT, Mann BA, Ahyi A-N-N, Kaplan MH. Bruton’s tyrosine kinase is required for TLR-induced IL-10 production. J Immunol. 2006;177(10):7203–7210. doi:10.4049/jimmunol.177.10.7203
  • Page TH, Urbaniak AM, Espirito Santo AI, et al. Bruton’s tyrosine kinase regulates TLR7/8-induced TNF transcription via nuclear factor-κB recruitment. Biochem Biophys Res Commun. 2018;499(2):260–266. doi:10.1016/j.bbrc.2018.03.140
  • Feng M, Chen JY, Weissman-Tsukamoto R, et al. Macrophages eat cancer cells using their calreticulin as a guide: roles of TLR and Btk. Proc Natl Acad Sci U S A. 2015;112(7):2145–2150.
  • Liu X, Zhan Z, Li D, et al. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol. 2011;12(5):416–424. doi:10.1038/ni.2015
  • Lougaris V, Baronio M, Vitali M, et al. Bruton tyrosine kinase mediates TLR9-dependent human dendritic cell activation. J Allergy Clin Immunol. 2014;133:6. doi:10.1016/j.jaci.2013.12.1085
  • Marron TU, Rohr K, Martinez-Gallo M, Yu J, Cunningham-Rundles C. TLR signaling and effector functions are intact in XLA neutrophils. Clin Immunol. 2010;137(1):74–80. doi:10.1016/j.clim.2010.06.011
  • Zorn CN, Keck S, Hendriks RW, Leitges M, Freudenberg MA, Huber M. Bruton’s tyrosine kinase is dispensable for the Toll-like receptor-mediated activation of mast cells. Cell Signal. 2009;21(1):79–86. doi:10.1016/j.cellsig.2008.09.010
  • Kennedy E, Coulter E, Halliwell E, et al. TLR9 expression in chronic lymphocytic leukemia identifies a promigratory subpopulation and novel therapeutic target. Blood. 2021;137(22):3064–3078. doi:10.1182/blood.2020005964
  • Dadashian EL, McAuley EM, Liu D, et al. TLR signaling is activated in lymph node-resident CLL cells and is only partially inhibited by ibrutinib. Cancer Res. 2019;79(2):360–371. doi:10.1158/0008-5472.CAN-18-0781
  • Kim J, Lee JY, Kim HG, Kwak MW, Kang TH. Fc receptor variants and disease: a crucial factor to consider in the antibody therapeutics in clinic. Int J Mol Sci. 2021;22:17.
  • Bame E, Tang H, Burns JC, et al. Next-generation Bruton’s tyrosine kinase inhibitor BIIB091 selectively and potently inhibits B cell and Fc receptor signaling and downstream functions in B cells and myeloid cells. Clin Transl Immunology. 2021;10(6):e1295. doi:10.1002/cti2.1295
  • Hata D, Kawakami Y, Inagaki N, et al. Involvement of Bruton’s tyrosine kinase in FcepsilonRI-dependent mast cell degranulation and cytokine production. J Exp Med. 1998;187(8):1235–1247. doi:10.1084/jem.187.8.1235
  • Wu Y, Pan W, Hu X, Zhang A, Wei W. The prospects for targeting FcR as a novel therapeutic strategy in rheumatoid arthritis. Biochem Pharmacol. 2021;183:114360. doi:10.1016/j.bcp.2020.114360
  • Haselmayer P, Camps M, Liu-Bujalski L, et al. Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models. J Immunol. 2019;202(10):2888–2906. doi:10.4049/jimmunol.1800583
  • Liu Y-T, Ding -H-H, Lin Z-M, et al. A novel tricyclic BTK inhibitor suppresses B cell responses and osteoclastic bone erosion in rheumatoid arthritis. Acta Pharmacol Sin. 2021;42(10):1653–1664. doi:10.1038/s41401-020-00578-0
  • Naylor-Adamson L, Chacko AR, Booth Z, et al. Bruton’s tyrosine kinase inhibitors impair FcγRIIA-Driven platelet responses to bacteria in chronic lymphocytic leukemia. Front Immunol. 2021;12:766272. doi:10.3389/fimmu.2021.766272
  • de Gorter DJJ, Beuling EA, Kersseboom R, et al. Bruton’s tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity. 2007;26:1. doi:10.1016/j.immuni.2006.11.012
  • Rijvers L, van Langelaar J, Bogers L, et al. Human T-bet+ B cell development is associated with BTK activity and suppressed by evobrutinib. JCI Insight. 2022;7. doi:10.1172/jci.insight.160909
  • García-Merino A. Bruton’s tyrosine kinase inhibitors: a new generation of promising agents for multiple sclerosis therapy. Cells. 2021;10:10. doi:10.3390/cells10102560
  • Torke S, Weber MS. Inhibition of Bruton's tyrosine kinase as a novel therapeutic approach in multiple sclerosis. Expert Opin Investig Drugs. 2020;29(10):1143–1150. doi:10.1080/13543784.2020.1807934
  • Montalban X, Arnold DL, Weber MS, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med. 2019;380(25):2406–2417. doi:10.1056/NEJMoa1901981
  • Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–688. doi:10.1056/NEJMoa0706383
  • Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol. 2018;19(7):696–707. doi:10.1038/s41590-018-0135-x
  • Häusser-Kinzel S, Weber MS. The role of B cells and antibodies in multiple sclerosis, neuromyelitis optica, and related disorders. Front Immunol. 2019;10:201. doi:10.3389/fimmu.2019.00201
  • Cencioni MT, Mattoscio M, Magliozzi R, Bar-Or A, Muraro PA. B cells in multiple sclerosis - from targeted depletion to immune reconstitution therapies. Nat Rev Neurol. 2021;17(7):399–414. doi:10.1038/s41582-021-00498-5
  • Torke S, Pretzsch R, Häusler D, et al. Inhibition of Bruton’s tyrosine kinase interferes with pathogenic B-cell development in inflammatory CNS demyelinating disease. Acta Neuropathol. 2020;140(4):535–548. doi:10.1007/s00401-020-02204-z
  • Li R, Tang H, Burns JC, et al. BTK inhibition limits B-cell-T-cell interaction through modulation of B-cell metabolism: implications for multiple sclerosis therapy. Acta Neuropathol. 2022;143(4):505–521. doi:10.1007/s00401-022-02411-w
  • Qiao H, Mao Z, Wang W, et al. Changes in the BTK/NF-κB signaling pathway and related cytokines in different stages of neuromyelitis optica spectrum disorders. Eur J Med Res. 2022;27(1):96. doi:10.1186/s40001-022-00723-x
  • Bhargava P, Hartung HP, Calabresi PA. Contribution of B cells to cortical damage in multiple sclerosis. Brain. 2022;145:3363–3373. doi:10.1093/brain/awac233
  • Weinshenker BG, Wingerchuk DM. Neuromyelitis spectrum disorders. Mayo Clin Proc. 2017;92(4):663–679. doi:10.1016/j.mayocp.2016.12.014
  • Li J, Bazzi SA, Schmitz F, et al. Molecular level characterization of circulating aquaporin-4 antibodies in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm. 2021;8:5. doi:10.1212/NXI.0000000000001034
  • Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts. Cell. 2019;179(2):292–311. doi:10.1016/j.cell.2019.08.053
  • Borst K, Dumas AA, Prinz M. Microglia: immune and non-immune functions. Immunity. 2021;54(10):2194–2208. doi:10.1016/j.immuni.2021.09.014
  • Shideman CR, Hu S, Peterson PK, Thayer SA. CCL5 evokes calcium signals in microglia through a kinase-, phosphoinositide-, and nucleotide-dependent mechanism. J Neurosci Res. 2006;83(8):1471–1484. doi:10.1002/jnr.20839
  • Pellerin K, Rubino SJ, Burns JC, et al. MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. Brain. 2021;144(8):2361–2374. doi:10.1093/brain/awab231
  • Nam HY, Nam JH, Yoon G, et al. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. J Neuroinflammation. 2018;15(1):271. doi:10.1186/s12974-018-1308-0
  • Martin E, Aigrot MS, Grenningloh R, et al. Bruton’s tyrosine kinase inhibition promotes myelin repair. Brain Plast. 2020;5(2):123–133. doi:10.3233/BPL-200100
  • Kierdorf K, Masuda T, Jordão MJC, Prinz M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci. 2019;20(9):547–562. doi:10.1038/s41583-019-0201-x
  • Blevins HM, Xu Y, Biby S, Zhang S. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front Aging Neurosci. 2022;14:879021.
  • Piancone F, La Rosa F, Marventano I, Saresella M, Clerici M. The role of the inflammasome in neurodegenerative diseases. Molecules. 2021;26:4. doi:10.3390/molecules26040953
  • Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 2021;18(9):2114–2127. doi:10.1038/s41423-021-00740-6
  • Jing X, Yao Y, Wu D, et al. IFP35 family proteins promote neuroinflammation and multiple sclerosis. Proc Natl Acad Sci U S A. 2021;118:32.
  • Yang T, Velagapudi R, Terrando N. Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat Immunol. 2020;21(11):1319–1326. doi:10.1038/s41590-020-00812-1
  • Bittner ZA, Liu X, Mateo Tortola M, et al. BTK operates a phospho-tyrosine switch to regulate NLRP3 inflammasome activity. J Exp Med. 2021;218:11. doi:10.1084/jem.20201656
  • Franke M, Bieber M, Kraft P, Weber ANR, Stoll G, Schuhmann MK. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun. 2021;92:223–233. doi:10.1016/j.bbi.2020.12.009
  • Zhu H, Jian Z, Zhong Y, et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition. Front Immunol. 2021;12:714943. doi:10.3389/fimmu.2021.714943
  • Ito M, Shichita T, Okada M, et al. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun. 2015;6:7360. doi:10.1038/ncomms8360
  • Schaff LR, Grommes C. Primary central nervous system lymphoma. Blood. 2021;5:8.
  • Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115–119. doi:10.1038/nature09671
  • Schaff LR, Grommes C. Update on novel therapeutics for primary CNS lymphoma. Cancers. 2021;13:21. doi:10.3390/cancers13215372
  • Lionakis MS, Dunleavy K, Roschewski M, et al. Inhibition of B cell receptor signaling by ibrutinib in primary CNS lymphoma. Cancer Cell. 2017;31:6. doi:10.1016/j.ccell.2017.04.012
  • Zhai Y, Zhou X, Wang X. Novel insights into the biomarkers and therapies for primary central nervous system lymphoma. Ther Adv Med Oncol. 2022;14:17588359221093745. doi:10.1177/17588359221093745
  • Jiménez I, Carabia J, Bobillo S, et al. Repolarization of tumor infiltrating macrophages and increased survival in mouse primary CNS lymphomas after XPO1 and BTK inhibition. J Neurooncol. 2020;149(1):13–25. doi:10.1007/s11060-020-03580-y
  • Yu H, Kong H, Li C, et al. Bruton’s tyrosine kinase inhibitors in primary central nervous system lymphoma-evaluation of anti-tumor efficacy and brain distribution. Transl Cancer Res. 2021;10(5):1975–1983. doi:10.21037/tcr-21-50
  • Grommes C, Pastore A, Palaskas N, et al. Ibrutinib unmasks critical role of Bruton tyrosine kinase in primary CNS Lymphoma. Cancer Discov. 2017;7(9):1018–1029. doi:10.1158/2159-8290.CD-17-0613
  • Soussain C, Choquet S, Blonski M, et al. Ibrutinib monotherapy for relapse or refractory primary CNS lymphoma and primary vitreoretinal lymphoma: final analysis of the phase II ‘proof-of-concept’ iLOC study by the Lymphoma study association (LYSA) and the French oculo-cerebral lymphoma (LOC) network. Eur J Cancer. 2019;117:121–130. doi:10.1016/j.ejca.2019.05.024
  • Lv L, Sun X, Wu Y, Cui Q, Chen Y, Liu Y. Efficacy and safety of ibrutinib in central nervous system lymphoma: a PRISMA-compliant single-arm meta-analysis. Front Oncol. 2021;11:707285. doi:10.3389/fonc.2021.707285
  • Grommes C, Tang SS, Wolfe J, et al. Phase 1b trial of an ibrutinib-based combination therapy in recurrent/refractory CNS lymphoma. Blood. 2019;133(5):436–445. doi:10.1182/blood-2018-09-875732
  • Houillier C, Chabrot CM, Moles-Moreau MP, et al. Rituximab-lenalidomide-ibrutinib combination for relapsed/refractory primary CNS lymphoma: a case series of the LOC network. Neurology. 2021;97(13):628–631. doi:10.1212/WNL.0000000000012515
  • Lewis KL, Chin CK, Manos K, et al. Ibrutinib for central nervous system lymphoma: the Australasian lymphoma alliance/MD Anderson cancer center experience. Br J Haematol. 2021;192(6):1049–1053. doi:10.1111/bjh.16946
  • Munakata W, Tobinai K. Tirabrutinib hydrochloride for B-cell lymphomas. Drugs Today. 2021;57(4):277–289. doi:10.1358/dot.2021.57.4.3264113
  • Okita Y, Kano-Fujiwara R, Nakatsuka S-I, Honma K, Kinoshita M. Histological verification of the treatment effect of tirabrutinib for relapsed/refractory primary central nervous system lymphoma. Exp Hematol Oncol. 2021;10(1):29. doi:10.1186/s40164-021-00222-5
  • Yang C, Cui Y, Ren X, et al. Orelabrutinib combined with lenalidomide and immunochemotherapy for relapsed/refractory primary central nervous system lymphoma: a retrospective analysis of case series. Front Oncol. 2022;12:901797. doi:10.3389/fonc.2022.901797