241
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Biomarkers Associated with Immune Checkpoint, N6-Methyladenosine, and Ferroptosis in Patients with Restenosis

, , , &
Pages 407-420 | Received 10 Oct 2022, Accepted 06 Jan 2023, Published online: 02 Feb 2023

References

  • Schweizer W. [Editorial: acute coronary heart disease: definition and nomenclature (author’s transl)]. Schweiz Rundsch Med Prax. 1975;64:829–830. German.
  • Her A, Shin E. Current management of in-stent restenosis. Korean Circ J. 2018;48:337–349. doi:10.4070/kcj.2018.0103
  • Li T, Zeng Z. Adiponectin as a potential therapeutic target for the treatment of restenosis. pharmacotherapie. 2018;101:798–804. doi:10.1016/j.biopha.2018.03.003
  • Stimpfle F, Bauer M, Rath D, et al. Variants of PEAR1 are associated with outcome in patients with ACS and stable CAD undergoing PCI. Front Pharmacol. 2018;9:490. doi:10.3389/fphar.2018.00490
  • Alfonso F, Byrne R, Rivero F, Kastrati A. Current treatment of in-stent restenosis. J Am Coll Cardiol. 2014;63:2659–2673. doi:10.1016/j.jacc.2014.02.545
  • Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J. 2014;35:2950–2959. doi:10.1093/eurheartj/ehu299
  • Avci II, Sahin I, Gungor B, et al. Association of monocyte to high-density lipoprotein ratio with bare-metal stent restenosis in STEMI patients treated with primary PCI. North Clin Istanb. 2019;6(4):393–400. doi:10.14744/nci.2018.93653
  • Law M, Watt H, Wald N. The underlying risk of death after myocardial infarction in the absence of treatment. Arch Intern Med. 2002;162:2405–2410. doi:10.1001/archinte.162.21.2405
  • Zhao E, Zhou C, Chen S. A signature of 14 immune-related gene pairs predicts overall survival in gastric cancer. Clin Transl Oncol. 2021;23:265–274. doi:10.1007/s12094-020-02414-7
  • Cao Y, Tang W, Tang W. Immune cell infiltration characteristics and related core genes in lupus nephritis: results from bioinformatic analysis. BMC Immunol. 2019;20:37. doi:10.1186/s12865-019-0316-x
  • Zhao E, Zhou C, Chen S. Flap endonuclease 1 (FEN1) as a novel diagnostic and prognostic biomarker for gastric cancer. Clin Res Hepatol Gastroenterol. 2021;45:101455. doi:10.1016/j.clinre.2020.04.019
  • Zhao E, Bai X. Nomogram based on microRNA signature contributes to improve survival prediction of clear cell renal cell carcinoma. Biomed Res Int. 2020;2020:7434737. doi:10.1155/2020/7434737
  • Chen A, Gao X, Wang Z, et al. Therapeutic exosomes in prognosis and developments of coronary artery disease. Front Cardiovasc Med. 2021;8:691548. doi:10.3389/fcvm.2021.691548
  • Wu Y, Fu X. Comprehensive analysis of predictive factors for rapid angiographic stenotic progression and restenosis risk in coronary artery disease patients underwent percutaneous coronary intervention with drug-eluting stents implantation. J Clin Lab Anal. 2019;33:e22666. doi:10.1002/jcla.22666
  • Sun J, Yu H, Liu H, et al. Correlation of pre-operative circulating inflammatory cytokines with restenosis and rapid angiographic stenotic progression risk in coronary artery disease patients underwent percutaneous coronary intervention with drug-eluting stents. J Clin Lab Anal. 2020;34(3):e23108. doi:10.1002/jcla.23108
  • Meeuwsen J, Wesseling M, Hoefer I, de Jager S. Prognostic value of circulating inflammatory cells in patients with stable and acute coronary artery disease. Front Cardiovasc Med. 2017;4:44. doi:10.3389/fcvm.2017.00044
  • Schiele T. Current understanding of coronary in-stent restenosis. Pathophysiology, clinical presentation, diagnostic work-up, and management. Z Kardiol. 2005;94:772–790. doi:10.1007/s00392-005-0299-x
  • Iwashima Y, Fukuda T, Yoshihara F, et al. Incidence and risk factors for restenosis, and its impact on blood pressure control after percutaneous transluminal renal angioplasty in hypertensive patients with renal artery stenosis. J Hypertens. 2016;34:1407–1415. doi:10.1097/HJH.0000000000000928
  • Zeller T, Rastan A, Macharzina R, Beschorner U, Noory E. Novel approaches to the management of advanced peripheral artery disease: perspectives on drug-coated balloons, drug-eluting stents, and bioresorbable scaffolds. Curr Cardiol Rep. 2015;17:624. doi:10.1007/s11886-015-0624-6
  • Park D, Ahn J, Park H, et al. Ten-year outcomes after drug-eluting stents versus coronary artery bypass grafting for left main coronary disease: extended follow-up of the PRECOMBAT trial. Circulation. 2020;141:1437–1446. doi:10.1161/circulationaha.120.046039
  • Barrett T, Wilhite S, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41:D991–995. doi:10.1093/nar/gks1193
  • Gene Ontology Consortium. The Gene Ontology (GO) project in 2006. Nucleic Acids Res. 2006;34:D322–326. doi:10.1093/nar/gkj021
  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–462. doi:10.1093/nar/gkv1070
  • Szklarczyk D, Gable A, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi:10.1093/nar/gky1131
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi:10.1101/gr.1239303
  • Hoadley K, Yau C, Wolf D, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. J Cell. 2014;158:929–944. doi:10.1016/j.cell.2014.06.049
  • Iglesia M, Parker J, Hoadley K, Serody J, Perou C, Vincent B. Genomic analysis of immune cell infiltrates across 11 tumor types. J Natl Cancer Inst. 2016;108:djw144. doi:10.1093/jnci/djw144
  • Koh Y, Han J, Haam S, Jung J, Lee H. Increased CMTM6 can predict the clinical response to PD-1 inhibitors in non-small cell lung cancer patients. J Oncoimmunol. 2019;8:e1629261. doi:10.1080/2162402x.2019.1629261
  • Yi L, Wu G, Guo L, Zou X, Huang P. Comprehensive analysis of the PD-L1 and immune infiltrates of mA RNA methylation regulators in head and neck squamous cell carcinoma. Mol Ther Nucleic Acids. 2020;21:299–314. doi:10.1016/j.omtn.2020.06.001
  • Yu G, Wang L, Han Y, He Q. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287. doi:10.1089/omi.2011.0118
  • Li L, Guo L, Yin G, et al. Upregulation of circular RNA circ_0001721 predicts unfavorable prognosis in osteosarcoma and facilitates cell progression via sponging miR-569 and miR-599. pharmacotherapie. 2019;109:226–232. doi:10.1016/j.biopha.2018.10.072
  • Liu Z, Zhao Q, Zuo ZX, et al. Systematic analysis of the aberrances and functional implications of ferroptosis in cancer. iScience. 2020;23:101302. doi:10.1016/j.isci.2020.101302
  • Li Y, Xiao J, Bai J, et al. Molecular characterization and clinical relevance of m(6)A regulators across 33 cancer types. Mol Cancer. 2019;18:137. doi:10.1186/s12943-019-1066-3
  • Zeng D, Li M, Zhou R, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res. 2019;7:737–750. doi:10.1158/2326-6066.CIR-18-0436
  • Wang J, Sun J, Liu LN, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med. 2019;25:656–666. doi:10.1038/s41591-019-0374-x
  • Vom Dahl J, Dietz U, Haager PK, et al. Rotational atherectomy does not reduce recurrent in-stent restenosis: results of the angioplasty versus rotational atherectomy for treatment of diffuse in-stent restenosis trial (ARTIST). Circulation. 2002;105:583–588. doi:10.1161/hc0502.103347
  • Cassese S, Byrne RA, Tada T, et al. Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography. Heart. 2014;100:153–159. doi:10.1136/heartjnl-2013-304933
  • Cassese S, Kufner S, Xhepa E, et al. Three-year efficacy and safety of new- versus early-generation drug-eluting stents for unprotected left main coronary artery disease insights from the ISAR-LEFT MAIN and ISAR-LEFT MAIN 2 trials. Clin Res Cardiol. 2016;105:575–584. doi:10.1007/s00392-015-0953-x
  • Yang X, Yang Y, Guo J, et al. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. Mol Ther Nucleic Acids. 2021;23:1136–1160. doi:10.1016/j.omtn.2021.01.024
  • Liu TF, Lin T, Ren LH, Li GP, Peng JJ. [Association of CMTM5 gene expression with the risk of in-stent restenosis in patients with coronary artery disease after drug-eluting stent implantation and the effects and mechanisms of CMTM5 on human vascular endothelial cells]. Beijing Da Xue Xue Bao Yi Xue Ban. 2020;52:856–862. Chinese. doi:10.19723/j.issn.1671-167X.2020.05.010
  • Li Z, Wu J, Wei W, et al. Association of serum miR-186-5p with the prognosis of acute coronary syndrome patients after percutaneous coronary intervention. Front Physiol. 2019;10:686. doi:10.3389/fphys.2019.00686
  • Li L, Cong Y, Gao X, Wang Y, Lin P. Differential expression profiles of long non-coding RNAs as potential biomarkers for the early diagnosis of acute myocardial infarction. Oncotarget. 2017;8:88613–88621. doi:10.18632/oncotarget.20101
  • Chen DQ, Kong XS, Shen XB, et al. Identification of differentially expressed genes and signaling pathways in acute myocardial infarction based on integrated bioinformatics analysis. Cardiovasc Ther. 2019;2019:8490707. doi:10.1155/2019/8490707
  • Han H, Du R, Cheng P, Zhang J, Chen Y, Li G. Comprehensive analysis of the immune infiltrates and aberrant pathways activation in atherosclerotic plaque. Front Cardiovasc Med. 2020;7:602345. doi:10.3389/fcvm.2020.602345
  • Ghafouri-Fard S, Gholipour M, Taheri M. Role of MicroRNAs in the pathogenesis of coronary artery disease. Front Cardiovasc Med. 2021;8:632392. doi:10.3389/fcvm.2021.632392
  • Scicchitano P, Marzullo A, Santoro A, et al. The prognostic role of ST2L and sST2 in patients who underwent carotid plaque endarterectomy: a five-year follow-up study. J Clin Med. 2022;11(11). doi:10.3390/jcm11113142
  • Hayiroglu MI, Cinar T, Cicek V, et al. A simple formula to predict echocardiographic diastolic dysfunction-electrocardiographic diastolic index. Herz. 2021;46(Suppl2):159–165. doi:10.1007/s00059-020-04972-6
  • Ghafouri-Fard S, Gholipour M, Taheri M. The emerging role of long non-coding RNAs and circular RNAs in coronary artery disease. Front Cardiovasc Med. 2021;8:632393. doi:10.3389/fcvm.2021.63239349
  • Cheng DD, Li SJ, Zhu B, Zhou SM, Yang QC. EEF1D overexpression promotes osteosarcoma cell proliferation by facilitating Akt-mTOR and Akt-bad signaling. J Exp Clin Cancer Res. 2018;37:50. doi:10.1186/s13046-018-0715-5
  • DiGiacomo V, Meruelo D. Looking into laminin receptor: critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol Rev Camb Philos Soc. 2016;91:288–310. doi:10.1111/brv.12170
  • Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67:2254–2270. doi:10.1002/hep.29683
  • Fei Q, Zou Z, Roundtree IA, Sun HL, He C. YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators. PLoS Biol. 2020;18:e3000664. doi:10.1371/journal.pbio.3000664
  • Miyake S, Wakita H, Bernstock JD, et al. Hypophosphorylation of ribosomal protein S6 is a molecular mechanism underlying ischemic tolerance induced by either hibernation or preconditioning. J Neurochem. 2015;135:943–957. doi:10.1111/jnc.13368
  • Hou J, Zhang H, Liu J, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer. 2019;18:163. doi:10.1186/s12943-019-1082-3
  • Li J, Xie H, Ying Y, et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 2020;19:152. doi:10.1186/s12943-020-01267-6
  • Shen X, Zhao K, Xu L, et al. YTHDF2 inhibits gastric cancer cell growth by regulating FOXC2 signaling pathway. Front Genet. 2020;11:592042. doi:10.3389/fgene.2020.592042
  • Xu F, Li J, Ni M, et al. FBW7 suppresses ovarian cancer development by targeting the N(6)-methyladenosine binding protein YTHDF2. Mol Cancer. 2021;20:45. doi:10.1186/s12943-021-01340-8
  • Vilas-Boas F, Bagulho A, Tenente R, et al. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA. Free Radic Biol Med. 2016;90:145–157. doi:10.1016/j.freeradbiomed.2015.11.019
  • Song M, Jung C, Park C, et al. RPL36 as a prognostic marker in hepatocellular carcinoma. Pathol Int. 2011;61:638–644. doi:10.1111/j.1440-1827.2011.02716.x