90
Views
0
CrossRef citations to date
0
Altmetric
HYPOTHESIS

The Contrasting Seasonality Patterns of Some Cancer-Types and Herpes Zoster Can Be Explained by a Binary Classification of Immunological Reactions

Pages 6761-6771 | Received 03 Oct 2022, Accepted 01 Dec 2022, Published online: 15 Dec 2022

References

  • Elkoshi Z. The binary classification of chronic diseases. J Inflamm Res. 2019;12:319333. doi:10.2147/JIR.S227279
  • Elkoshi Z. ”High Treg” inflammations promote (most) non-hematologic cancers while “Low Treg” inflammations promote lymphoid cancers. J Inflamm Res. 2020;13:209221. doi:10.2147/JIR.S249384
  • Elkoshi Z. The binary model of chronic diseases applied to COVID-19. Front Immunol. 2021;12:716084. doi:10.3389/fimmu.2021.716084
  • Elkoshi Z. SARS-CoV-2 omicron (B.1.1.529) variant: corticosteroids treatment/respiratory coinfection. Front Immunol. 2022;13:856072. doi:10.3389/fimmu.2022.856072
  • Elkoshi Z. The binary classification of protein kinases. J Inflamm Res. 2021;14:929–947. doi:10.2147/JIR.S303750
  • Lambe M, Blomqvist P, Bellocco R. Seasonal variation in the diagnosis of cancer: a study based on national cancer registration in Sweden. Br J Cancer. 2003;88(9):135860. doi:10.1038/sj.bjc.6600901
  • Robsahm TE, Tretli S, Dahlback A, Moan J. Vitamin D3 from sunlight may improve the prognosis of breast-, colon- and prostate cancer (Norway). Cancer Causes Control. 2004;15(2):149–158. doi:10.1023/B:CACO.0000019494.34403.09
  • McNally R, Basta N, James P, Craft A. Seasonal variation in birth and diagnosis of cancer in children and young people in Northern England, 1968–2005. Epidemiology. 2009;20:S18. doi:10.1097/01.ede.0000362231.71672.43
  • Ho A, Gabriel A, Bhatnagar A, Etienne D, Loukas M. Seasonality pattern of breast, colorectal, and prostate cancer is dependent on latitude. Med Sci Monit. 2014;20:818–824. doi:10.12659/MSM.890062
  • Trump DL, Aragon-Ching JB. Vitamin D in prostate cancer. Asian J Androl. 2018;20(3):244–252. doi:10.4103/aja.aja_14_18
  • Hart PH, Norval M, Byrne SN, Rhodes LE. Exposure to ultraviolet radiation in the modulation of human diseases. Annu Rev Pathol. 2019;14:55–81. doi:10.1146/annurevpathmechdis-012418-012809
  • Berlinberg EJ, Kim E, Deiner MS, Patterson C, Porco TC, Acharya NR. Seasonality of herpes zoster and herpes zoster ophthalmicus. J Clin Virol. 2020;126:104306. doi:10.1016/j.jcv.2020.104306
  • Porojnicu AC, Robsahm TE, Dahlback A, et al. Seasonal and geographical variations in lung cancer prognosis in Norway. Does vitamin D from the sun play a role? Lung Cancer. 2007;55(3):263–270. doi:10.1016/j.lungcan.2006.11.013
  • Hysaj O, Karavasiloglou N, Limam M, Wanner M, Korol D, Rohrmann S. Is season of diagnosis a predictor of cancer survival? Results from the Zurich Cancer Registry. Nutrients. 2022;14(20):4291. doi:10.3390/nu14204291
  • Holmberg L, Adolfsson J, Mucci L, et al. Season of diagnosis and prognosis in breast and prostate cancer. Cancer Causes Control. 2009;20(5):663–670. doi:10.1007/s10552-008-9279-6
  • Moan J, Lagunova Z, Bruland O, Juzeniene A. Seasonal variations of cancer incidence and prognosis. Dermatoendocrinol. 2010;2(2):55–57. doi:10.4161/derm.2.2.12664
  • Athanassiou L, Mavragani CP, Koutsilieris M. The immunomodulatory properties of vitamin D. Mediterr J Rheumatol. 2022;33(1):7–13. doi:10.31138/mjr.33.1.7
  • Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19–20):1267–1284. doi:10.1101/gad.314617.118
  • Domagala-Kulawik J, Osinska I, Hoser G. Mechanisms of immune response regulation in lung cancer. Transl Lung Cancer Res. 2014;3(1):15–22. doi:10.3978/j.issn.22186751.2013.11.03
  • Lim RJ, Liu B, Krysan K, Dubinett SM. Lung cancer and immunity markers. Cancer Epidemiol Biomarkers Prev. 2020;29(12):2423–2430. doi:10.1158/1055-9965.EPI200716
  • Anichini A, Perotti VE, Sgambelluri F, Mortarini R. Immune escape mechanisms in non small cell lung cancer. Cancers. 2020;12(12):3605. doi:10.3390/cancers12123605
  • Nguyen PHD, Wasser M, Tan CT, et al. Trajectory of immune evasion and cancer progression in hepatocellular carcinoma. Nat Commun. 2022;13(1):1441. doi:10.1038/s41467-022-29122-w
  • Schwarz T. 25 years of UV-induced immunosuppression mediated by T cells-from disregarded T suppressor cells to highly respected regulatory T cells. Photochem Photobiol. 2008;84(1):10–18. doi:10.1111/j.1751-1097.2007.00223.x
  • Ji G, Huang C, Song G, et al. Are the pathological characteristics of prostate cancer more aggressive or more indolent depending upon the patient age? Biomed Res Int. 2017;2017:1438027. doi:10.1155/2017/1438027
  • Walters S, Maringe C, Coleman MP, et al.; ICBP Module 1 Working Group. Lung cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: a population-based study, 2004–2007. Thorax. 2013;68(6):551–564. doi:10.1136/thoraxjnl-2012-202297
  • Hahn LD, Kunder CA, Chen MM, Orloff LA, Desser TS. Indolent thyroid cancer: knowns and unknowns. Cancers Head Neck. 2017;2:1. doi:10.1186/s411990160021-x
  • Abualkhair WH, Zhou M, Ahnen D, Yu Q, Wu XC, Karlitz JJ. Trends in Incidence of Early-Onset Colorectal Cancer in the United States Among Those Approaching Screening Age. JAMA Netw Open. 2020;3(1):e1920407. doi:10.1001/jamanetworkopen.2019.20407
  • Shen Y, Dong W, Gulati R, Ryser MD, Etzioni R. Estimating the frequency of indolent breast cancer in screening trials. Stat Methods Med Res. 2019;28(4):1261–1271. doi:10.1177/0962280217754232
  • Tanne JH. Breast cancer is overdiagnosed in one in six or seven cases, finds large US study. BMJ. 2022;376:o581. doi:10.1136/bmj.o581
  • Zhong W, Zhao J, Huang K, Zhang J, Chen Z. Comparison of clinicopathological and molecular features between young and old patients with lung cancer. Int J Clin Exp Pathol. 2018;11(2):1031–1035.
  • Van Herck Y, FeyaertsAlibhai S, Papamichael D, et al. Is cancer biology different in older patients? Lancet Heal Longev. 2021;2:e663–e677. doi:10.1016/S2666-7568(21)00179-3
  • Thalanayar PM, Altintas N, Weissfeld JL, Fuhrman CR, Wilson DO. Indolent, potentially inconsequential lung cancers in the Pittsburgh lung screening study. Ann Am Thorac Soc. 2015;12(8):1193–1196. doi:10.1513/AnnalsATS.201412-577OC
  • Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci. 2018;17(12):1816–1841. doi:10.1039/c7pp00395a
  • Kripke ML, Fisher MS. Immunologic aspects of tumor induction by ultraviolet radiation. Natl Cancer Inst Monogr. 1978;50:179–183. PMID: 753974.
  • Moan J, Grigalavicius M, Baturaite Z, Juzeniene A, Dahlback A. North-South gradients of melanomas and non-melanomas: a role of vitamin D? Dermatoendocrinol. 2013;5(1):186–191. doi:10.4161/derm.23791
  • Berge LAM, Andreassen BK, Stenehjem JS, et al. Use of immunomodulating drugs and risk of cutaneous melanoma: a nationwide nested case-control study. Clin Epidemiol. 2020;12:1389–1401. doi:10.2147/CLEP.S269446
  • Jensen AØ, Thomsen HF, Engebjerg MC, et al. Use of oral glucocorticoids and risk of skin cancer and non-Hodgkin’s lymphoma: a population based case-control study. Br J Cancer. 2009;100(1):200–205. doi:10.1038/sj.bjc.6604796
  • Sørensen HT, Mellemkjaer L, Nielsen GL, Baron JA, Olsen JH, Karagas MR. Skin cancers and non-Hodgkin lymphoma among users of systemic glucocorticoids: a population-based cohort study. J Natl Cancer Inst. 2004;96(9):709–711. doi:10.1093/jnci/djh118
  • Baibergenova AT, Weinstock MA; VATTC Trial Group. Oral prednisone use and risk of keratinocyte carcinoma in non-transplant population. The VATTC trial. J Eur Acad Dermatol Venereol. 2012;26(9):1109–1115. doi:10.1111/j.1468-3083.2011.04226.x
  • Whiteman DC, Olsen CM, MacGregor S, et al. QSkin Study. The effect of screening on melanoma incidence and biopsy rates. Br J Dermatol. 2022;187(4):515–522. doi:10.1111/bjd.21649
  • Milman N, Zhu J, Johnston C, et al. In situ detection of regulatory T cells in human genital herpes simplex virus type 2 (HSV-2) reactivation and their influence on spontaneous HSV-2 reactivation. J Infect Dis. 2016;214(1):23–31. doi:10.1093/infdis/jiw091
  • Rouse BT, Sarangi PP, Suvas S. Regulatory T cells in virus infections. Immunol Rev. 2006;212:272–286. doi:10.1111/j.0105-2896.2006.00412.x
  • Toka FN, Suvas S, Rouse BT. CD4+ CD25+ T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against herpes simplex virus type 1. J Virol. 2004;78(23):13082–13089. doi:10.1128/JVI.78.23.13082-13089.2004
  • Yu W, Geng S, Suo Y, et al. Critical role of regulatory T cells in the latency and stress-induced reactivation of HSV-1. Cell Rep. 2018;25(9):2379–2389.e3. doi:10.1016/j.celrep.2018.10.105
  • Padgett DA, Sheridan JF, Dorne J, Berntson GG, Candelora J, Glaser R. Social stress and the reactivation of latent herpes simplex virus type 1. Proc Natl Acad Sci U S A. 1998;95(12):7231–7235. doi:10.1073/pnas.95.12.7231
  • Cohen JI, Solomon CG. Clinical practice: herpes zoster. N Engl J Med. 2013;369(3):255–263. doi:10.1056/NEJMcp1302674
  • Patil A, Goldust M, Wollina U. Herpes zoster: a review of clinical manifestations and management. Viruses. 2022;14(2):192. doi:10.3390/v14020192
  • Laing KJ, Ouwendijk WJD, Koelle DM, Verjans GMGM. Immunobiology of varicellazoster virus infection. J Infect Dis. 2018;218(suppl_2):S68–S74. doi:10.1093/infdis/jiy403
  • Karadag Oncel E, Kara A, Celik M, Karahan S, Cengiz AB, Ceyhan M. Determination and clinical correlation of markers of inflammation in unvaccinated patients with varicella-zoster infection. Eur Rev Med Pharmacol Sci. 2013;17(15):2032–2039.
  • Jeon YH. Herpes zoster and postherpetic neuralgia: practical consideration for prevention and treatment. Korean J Pain. 2015;28(3):177–184. doi:10.3344/kjp.2015.28.3.177
  • Wang JP, Kurt-Jones EA, Shin OS, Manchak MD, Levin MJ, Finberg RW. Varicellazoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol. 2005;79(20):12658–12666. doi:10.1128/JVI.79.20.1265812666.2005
  • Nour AM, Reichelt M, Ku CC, Ho MY, Heineman TC, Arvin AM. Varicella-zoster virus infection triggers formation of an interleukin-1β (IL-1β)-processing inflammasome complex. J Biol Chem. 2011;286(20):17921–17933. doi:10.1074/jbc.M110.210575
  • Oskay T, Keskin C, Özen M. Antioxidant and inflammatory biomarkers in herpes zoster. J Med Virol. 2022;94(8):3924–3929. doi:10.1002/jmv.27781
  • Bereshchenko O, Coppo M, Bruscoli S, et al. GILZ promotes production of peripherally induced Treg cells and mediates the crosstalk between glucocorticoids and TGF-β signaling. Cell Rep. 2014;7(2):464–475. doi:10.1016/j.celrep.2014.03.004
  • Dowell SF, Bresee JS. Severe varicella associated with steroid use. Pediatrics. 1993;92(2):223–228. doi:10.1542/peds.92.2.223
  • Hill G, Chauvenet AR, Lovato J, McLean TW. Recent steroid therapy increases severity of varicella infections in children with acute lymphoblastic leukemia. Pediatrics. 2005;116(4):e525–9. doi:10.1542/peds.2005-0219
  • Qian J, Banks E, Macartney K, Heywood AE, Lassere MN, Liu B. Corticosteroid use and risk of herpes zoster in a population-based cohort. Mayo Clin Proc. 2021;96(11):2843–2853. doi:10.1016/j.mayocp.2021.05.029
  • Price NB, Grose C. Corticosteroids contribute to serious adverse events following live attenuated varicella vaccination and live attenuated zoster vaccination. Vaccines. 2021;9(1):23. doi:10.3390/vaccines9010023
  • Gross GE, Eisert L, Doerr HW, et al. S2k guidelines for the diagnosis and treatment of herpes zoster and postherpetic neuralgia. J Dtsch Dermatol Ges. 2020;18(1):55–78. doi:10.1111/ddg.14013
  • Adhami N, Arabi Y, Raees A, Al-Shimemeri A, Ur-Rahman M, Memish ZA. Effect of corticosteroids on adult varicella pneumonia: cohort study and literature review. Respirology. 2006;11(4):437–441. doi:10.1111/j.1440-1843.2006.00870.x
  • Anwar SK, Masoodi I, Alfaifi A, Hussain S, Sirwal IA. Combining corticosteroids and Acyclovir in the management of varicella pneumonia: a prospective study. Antivir Ther. 2014;19(2):221–224. doi:10.3851/IMP2751
  • Mer M, Richards GA. Corticosteroids in life-threatening varicella pneumonia. Chest. 1998;114(2):426–431. doi:10.1378/chest.114.2.426
  • Kowalsky DS, Wolfson AB, Zehtabchi S. Corticosteroids for preventing postherpetic neuralgia after herpes zoster infection. Acad Emerg Med. 2019;26(6):686–687. doi:10.1111/acem.13661
  • Devor M. Rethinking the causes of pain in herpes zoster and postherpetic neuralgia: the ectopic pacemaker hypothesis. Pain Rep. 2018;3(6):e702. doi:10.1097/PR9.0000000000000702
  • Grover P, Goel PN, Greene MI. Regulatory T Cells: regulation of Identity and Function. Front Immunol. 2021;12:750542. doi:10.3389/fimmu.2021.750542
  • Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41. doi:10.1016/j.immuni.2019.06.025
  • Sánchez-Vizcaíno F, Tamayo C, Ramos F, et al. Identification of seasonal variation in the diagnosis of acute myeloid leukaemia: a population-based study. Br J Haematol. 2022;198(3):545–555. doi:10.1111/bjh.18279
  • Lamikanra AA, Tsang HP, Elsiddig S, et al. TheMigratory properties and numbers of T regulatory cell subsets in circulation are differentially Influenced by season and are associated with vitamin D status. Front Immunol. 2020;11:685. doi:10.3389/fimmu.2020.00685
  • Elkoshi Z. Cancer and autoimmune diseases: a tale of two immunological opposites? Front Immunol. 2022;13:821598. doi:10.3389/fimmu.2022.821598
  • Giovannucci E, Liu Y, Rimm EB, et al. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst. 2006;98(7):451–459. doi:10.1093/jnci/djj101
  • Chen P, Hu P, Xie D, Qin Y, Wang F, Wang H. Meta-analysis of vitamin D, calcium and the prevention of breast cancer. Breast Cancer Res Treat. 2010;121(2):469–477. doi:10.1007/s10549-009-0593-9
  • Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M. Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation. Cancer Cell. 2010;17(1):89–97. doi:10.1016/j.ccr.2009.12.008
  • Lugade AA, Bogner PN, Thatcher TH, Sime PJ, Phipps RP, Thanavala Y. Cigarette smoke exposure exacerbates lung inflammation and compromises immunity to bacterial infection. J Immunol. 2014;192(11):5226–5235. doi:10.4049/jimmunol.1302584
  • Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxy vitamin D3. FASEB J. 2005;19(9):1067–1077. doi:10.1096/fj.04-3284com
  • Yuk JM, Shin DM, Lee HM, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. 2009;6(3):231–243. doi:10.1016/j.chom.2009.08.004
  • Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–1773. doi:10.1126/science.1123933
  • Martineau AR, Wilkinson KA, Newton SM, et al. IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol. 2007;178(11):7190–7198. doi:10.4049/jimmunol.178.11.7190
  • Lemire JM, Adams JS, Sakai R, Jordan SC. 1 alpha,25-dihydroxy vitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J Clin Invest. 1984;74(2):657–661. doi:10.1172/JCI111465
  • Linker-Israeli M, Elstner E, Klinenberg JR, Wallace DJ, Koeffler HP. Vitamin D(3) and its synthetic analogs inhibit the spontaneous in vitro immunoglobulin production by SLEderived PBMC. Clin Immunol. 2001;99(1):82–93. doi:10.1006/clim.2000.4998
  • Rigby WF, Stacy T, Fanger MW. Inhibition of T lymphocyte mitogenesis by 1,25 dihydroxy vitamin D3 (calcitriol). J Clin Invest. 1984;74(4):1451–1455. doi:10.1172/JCI111557
  • Lemire JM, Adams JS, Kermani-Arab V, Bakke AC, Sakai R, Jordan SC. 1,25 Dihydroxy vitamin D3 suppresses human T helper/inducer lymphocyte activity in vitro. J Immunol. 1985;134(5):3032–3035.
  • Tsoukas CD, Watry D, Escobar SS, et al. Inhibition of interleukin-1 production by 1,25-dihydroxy vitamin D3. J Clin Endocrinol Metab. 1989;69(1):127–133. doi:10.1210/jcem-69-1-127
  • Ikeda U, Wakita D, Ohkuri T, et al. 1α,25 Dihydroxy vitamin D3 and all-trans retinoic acid synergistically inhibit the differentiation and expansion of Th17 cells. Immunol Lett. 2010;134(1):7–16. doi:10.1016/j.imlet.2010.07.002
  • Joshi S, Pantalena LC, Liu XK, et al. 1,25 dihydroxy vitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol. 2011;31(17):3653–3669. doi:10.1128/MCB.05020-11
  • Berer A, Stöckl J, Majdic O, et al. 1,25-Dihydroxy vitamin D(3) inhibits dendritic cell differentiation and maturation in vitro. Exp Hematol. 2000;28(5):575–583. doi:10.1016/s0301-472x(00)00143-0
  • Ao T, Kikuta J, Ishii M. The effects of vitamin d on immune system and inflammatory diseases. Biomolecules. 2021;11(11):1624. doi:10.3390/biom11111624
  • Martinez ME, Kline KA. The calendar of epidemics: seasonal cycles of infectious diseases. PLoS Pathog. 2018;14(11):e1007327. doi:10.1371/journal.ppat.1007327
  • Weinberg A, Bloch KC, Li S, Tang YW, Palmer M, Tyler KL. Dual infections of the central nervous system with Epstein-Barr virus. J Infect Dis. 2005;191(2):234–237. doi:10.1086/426402
  • Hughes CM, Liu L, Davidson WB, et al. A tale of two viruses: coinfections of monkeypox and varicella zoster virus in the democratic Republic of Congo. Am J Trop Med Hyg. 2020;104(2):604–611. doi:10.4269/ajtmh.200589
  • Loh J, Tham SM, Tambyah PA, Yan G, Lee CK, Chai LYA. Range of varicella zoster co-infections with COVID-19, Singapore. Infect Chemother. 2021;53(2):391–394. doi:10.3947/ic.2020.0154
  • The centers for disease control and prevention. Chickenpox (varicella). Available from: https://www.cdc.gov/chickenpox/hcp/index.html. Accessed September 9, 2022.
  • Tellier R, Li Y, Cowling BJ, Tang JW. Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect Dis. 2019;19(1):101. doi:10.1186/s12879-019-3707y
  • The centers for disease control and prevention. Shingles (herpes zoster). Available from: https://www.cdc.gov/shingles/hcp/index.html. Accessed September 9, 2022.
  • Sumi A. Role of temperature in reported chickenpox cases in Northern European countries: Denmark and Finland. BMC Res Notes. 2018;11(1):377. doi:10.1186/s13104018-3497-0