193
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Proinflammatory and Immunomodulatory Gene and Protein Expression Patterns in Spinal Cord and Spleen Following Acute and Chronic High Thoracic Injury

, , & ORCID Icon
Pages 3341-3349 | Received 11 May 2023, Accepted 04 Aug 2023, Published online: 08 Aug 2023

References

  • Eldahan KC, Rabchevsky AG. Autonomic dysreflexia after spinal cord injury: systemic pathophysiology and methods of management. Auton Neurosci. 2018;209:59–70. doi:10.1016/j.autneu.2017.05.002
  • Zhang Y, Guan Z, Reader B, et al. Autonomic dysreflexia causes chronic immune suppression after spinal cord injury. J Neurosci. 2013;33:12970–12981. doi:10.1523/JNEUROSCI.1974-13.2013
  • Nance DM, Macneil BJ. Immunoregulation by the sympathetic nervous system. Neuroimmune Biol. 2001;1:121–139.
  • Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005;6(10):775–786. doi:10.1038/nrn1765
  • Cano G, Sved AF, Rinaman L, Rabin BS, Card JP. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol. 2001;439(1):1–18. doi:10.1002/cne.1331
  • Zha J, Smith A, Andreansky S, Bracchi-Ricard V, Bethea JR. Chronic thoracic spinal cord injury impairs CD8+ T-cell function by up-regulating programmed cell death-1 expression. J Neuroinflammation. 2014;11(1):65. doi:10.1186/1742-2094-11-65
  • Riegger T, Conrad S, Schluesener HJ, et al. Immune depression syndrome following human spinal cord injury (SCI): a pilot study. Neuroscience. 2009;158:1194–1199. doi:10.1016/j.neuroscience.2008.08.021
  • Riegger T, Conrad S, Liu K, Schluesener HJ, Adibzahdeh M, Schwab JM. Spinal cord injury-induced immune depression syndrome (SCI-IDS). Eur J Neurosci. 2007;25:1743–1747. doi:10.1111/j.1460-9568.2007.05447.x
  • Brommer B, Engel O, Kopp MA, et al. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain. 2016;139:692–707. doi:10.1093/brain/awv375
  • Ueno M, Ueno-Nakamura Y, Niehaus J, Popovich PG, Yoshida Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci. 2016;19:784–787. doi:10.1038/nn.4289
  • Brennan FH, Noble BT, Wang Y, et al. Acute post-injury blockade of alpha2delta-1 calcium channel subunits prevents pathological autonomic plasticity after spinal cord injury. Cell Rep. 2021;34:108667. doi:10.1016/j.celrep.2020.108667
  • Maiorov DN, Krenz NR, Krassioukov AV, Weaver LC. Role of spinal NMDA and AMPA receptors in episodic hypertension in conscious spinal rats. Am J Physiol. 1997;273:H1266–H1274. doi:10.1152/ajpheart.1997.273.3.H1266
  • Noble BT, Brennan FH, Wang Y, et al. Thoracic VGluT2(+) spinal interneurons regulate structural and functional plasticity of sympathetic networks after high-level spinal cord injury. J Neurosci. 2022;42:3659–3675. doi:10.1523/JNEUROSCI.2134-21.2022
  • Mironets E, Osei-Owusu P, Bracchi-Ricard V, et al. Soluble TNFalpha signaling within the spinal cord contributes to the development of autonomic dysreflexia and ensuing vascular and immune dysfunction after spinal cord injury. J Neurosci. 2018;38:4146–4162. doi:10.1523/JNEUROSCI.2376-17.2018
  • O’Reilly ML, Mironets E, Shapiro TM, et al. Pharmacological inhibition of soluble tumor necrosis factor-alpha two weeks after high thoracic spinal cord injury does not affect sympathetic hyperreflexia. J Neurotrauma. 2021;38(15):2186–2191. doi:10.1089/neu.2020.7504
  • Monteiro S, Pinho AG, Macieira M, et al. Splenic sympathetic signaling contributes to acute neutrophil infiltration of the injured spinal cord. J Neuroinflammation. 2020;17:282. doi:10.1186/s12974-020-01945-8
  • Noble BT, Brennan FH, Popovich PG. The spleen as a neuroimmune interface after spinal cord injury. J Neuroimmunol. 2018;321:1–11. doi:10.1016/j.jneuroim.2018.05.007
  • Wu F, Ding XY, Li XH, et al. Cellular inflammatory response of the spleen after acute spinal cord injury in rat. Inflammation. 2019;42:1630–1640. doi:10.1007/s10753-019-01024-y
  • Cameron AA, Smith GM, Randall DC, Brown DR, Rabchevsky AG. Genetic manipulation of intraspinal plasticity after spinal cord injury alters the severity of autonomic dysreflexia. J Neurosci. 2006;26:2923–2932. doi:10.1523/JNEUROSCI.4390-05.2006
  • Rabchevsky AG, Patel SP, Lyttle TS, et al. Effects of gabapentin on muscle spasticity and both induced as well as spontaneous autonomic dysreflexia after complete spinal cord injury. Front Physiol. 2012;3:329. doi:10.3389/fphys.2012.00329
  • Bansal S, Friedrichs WE, Velagapudi C, et al. Spleen contributes significantly to increased circulating levels of fibroblast growth factor 23 in response to lipopolysaccharide-induced inflammation. Nephrol Dial Transplant. 2017;32:960–968. doi:10.1093/ndt/gfw376
  • Michael FM, Chandran P, Chandramohan K, et al. Prospects of siRNA cocktails as tools for modifying multiple gene targets in the injured spinal cord. Exp Biol Med. 2019;244(13):1096–1110. doi:10.1177/1535370219871868
  • Zhang Z, Shen M, Gresch PJ, et al. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake. EMBO Mol Med. 2016;8:878–894. doi:10.15252/emmm.201506030
  • West CR, Popok D, Crawford MA, Krassioukov AV. Characterizing the temporal development of cardiovascular dysfunction in response to spinal cord injury. J Neurotrauma. 2015;32:922–930. doi:10.1089/neu.2014.3722
  • Mironets E, Fischer R, Bracchi-Ricard V, et al. Attenuating neurogenic sympathetic hyperreflexia robustly improves antibacterial immunity after chronic spinal cord injury. J Neurosci. 2020;40:478–492. doi:10.1523/JNEUROSCI.2417-19.2019
  • Eldahan KC, Williams HC, Cox DH, Gollihue JL, Patel SP, Rabchevsky AG. Paradoxical effects of continuous high dose gabapentin treatment on autonomic dysreflexia after complete spinal cord injury. Exp Neurol. 2020;323:113083. doi:10.1016/j.expneurol.2019.113083
  • Rivas DA, Chancellor MB, Huang B, Salzman SK. Autonomic dysreflexia in a rat model spinal cord injury and the effect of pharmacologic agents. Neurourol Urodyn. 1995;14:141–152. doi:10.1002/nau.1930140207
  • Trueblood CT, Iredia IW, Collyer ES, Tom VJ, Hou S. Development of cardiovascular dysfunction in a rat spinal cord crush model and responses to serotonergic interventions. J Neurotrauma. 2019;36:1478–1486. doi:10.1089/neu.2018.5962
  • Squair JW, West CR, Popok D, et al. High thoracic contusion model for the investigation of cardiovascular function after spinal cord injury. J Neurotrauma. 2017;34:671–684. doi:10.1089/neu.2016.4518
  • Ulndreaj A, Tzekou A, Siddiqui AM, Fehlings MG. Effects of experimental cervical spinal cord injury on peripheral adaptive immunity. PLoS One. 2020;15:e0241285. doi:10.1371/journal.pone.0241285
  • Ishii H, Tanabe S, Ueno M, et al. Ifn-gamma-dependent secretion of IL-10 from Th1 cells and microglia/macrophages contributes to functional recovery after spinal cord injury. Cell Death Dis. 2013;4:e710. doi:10.1038/cddis.2013.234
  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009;29(43):13435–13444. doi:10.1523/JNEUROSCI.3257-09.2009
  • Victorio SC, Havton LA, Oliveira AL. Absence of IFNgamma expression induces neuronal degeneration in the spinal cord of adult mice. J Neuroinflammation. 2010;7:77. doi:10.1186/1742-2094-7-77
  • Reischer G, Heinke B, Sandkuhler J. Interferon-gamma facilitates the synaptic transmission between primary afferent C-fibres and lamina I neurons in the rat spinal dorsal horn via microglia activation. Mol Pain. 2020;16:1744806920917249. doi:10.1177/1744806920917249