178
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Integrated Analysis of Immune Infiltration and Hub Pyroptosis-Related Genes for Multiple Sclerosis

, , , , , & ORCID Icon show all
Pages 4043-4059 | Received 08 Jun 2023, Accepted 02 Sep 2023, Published online: 13 Sep 2023

References

  • Ashraf H, Solla P, Sechi LA. Current advancement of immunomodulatory drugs as potential pharmacotherapies for autoimmunity based neurological diseases. Pharmaceuticals. 2022;15:1077. doi:10.3390/ph15091077
  • Shinoda K, Li R, Rezk A, et al. Differential effects of anti-CD20 therapy on CD4 and CD8 T cells and implication of CD20-expressing CD8 T cells in MS disease activity. Proc Natl Acad Sci U S A. 2023;120:e2207291120. doi:10.1073/pnas.2207291120
  • Wiendl H, Schmierer K, Hodgkinson S, et al. Specific patterns of immune cell dynamics may explain the early onset and prolonged efficacy of cladribine tablets: a MAGNIFY-MS substudy. Neurol Neuroimmunol Neuroinflamm. 2023;10:e200048. doi:10.1212/NXI.0000000000200048
  • Gan J, Huang M, Lan G, et al. High glucose induces the loss of retinal pericytes partly via NLRP3-Caspase-1-GSDMD-mediated pyroptosis. Biomed Res Int. 2020;2020:4510628. doi:10.1155/2020/4510628
  • Zhang D, Li Y, Du C, et al. Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med. 2022;20:363. doi:10.1186/s12967-022-03566-6
  • Xu D, Ji Z, Qiang L. Molecular characteristics, clinical implication, and cancer immunity interactions of pyroptosis-related genes in breast cancer. Front Med. 2021;8:702638. doi:10.3389/fmed.2021.702638
  • Taabazuing CY, Okondo MC, Bachovchin DA. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol. 2017;24:507–514.e504. doi:10.1016/j.chembiol.2017.03.009
  • Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42:245–254. doi:10.1016/j.tibs.2016.10.004
  • Sborgi L, Rühl S, Mulvihill E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO j. 2016;35:1766–1778. doi:10.15252/embj.201694696
  • Zhang Y, Chen X, Gueydan C, et al. Plasma membrane changes during programmed cell deaths. Cell Res. 2018;28:9–21. doi:10.1038/cr.2017.133
  • McKenzie BA, Dixit VM, Power C. Fiery cell death: pyroptosis in the central nervous system. Trends Neurosci. 2020;43:55–73. doi:10.1016/j.tins.2019.11.005
  • Barclay W, Shinohara ML. Inflammasome activation in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Brain Pathol. 2017;27:213–219. doi:10.1111/bpa.12477
  • McKenzie BA, Mamik MK, Saito LB, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci U S A. 2018;115:E6065–e6074. doi:10.1073/pnas.1722041115
  • Liu ZK, Wu KF, Zhang RY, et al. Pyroptosis-Related LncRNA signature predicts prognosis and is associated with immune infiltration in hepatocellular carcinoma. Front Oncol. 2022;12:794034. doi:10.3389/fonc.2022.794034
  • Goris A, Vandebergh M, McCauley JL, et al. Genetics of multiple sclerosis: lessons from polygenicity. Lancet Neurol. 2022;21:830–842. doi:10.1016/S1474-4422(22)00255-1
  • Nussbaum YI, Manjunath Y, Suvilesh KN, et al. Current and prospective methods for assessing anti-tumor immunity in colorectal cancer. Int J Mol Sci. 2021;22:4802. doi:10.3390/ijms22094802
  • Nie H, Yan C, Zhou W, et al. Analysis of immune and inflammation characteristics of atherosclerosis from different sample sources. Oxid Med Cell Longev. 2022;2022:5491038. doi:10.1155/2022/5491038
  • Qiu K, Zeng T, Liao Y, et al. Identification of inflammation-related biomarker Pro-ADM for male patients with gout by comprehensive analysis. Front Immunol. 2021;12:798719. doi:10.3389/fimmu.2021.798719
  • Yao XQ, Chen JY, Yu ZH, et al. Bioinformatics analysis identified apolipoprotein E as a hub gene regulating neuroinflammation in macrophages and microglia following spinal cord injury. Front Immunol. 2022;13:964138. doi:10.3389/fimmu.2022.964138
  • Lu Y, Li K, Hu Y, et al. Expression of immune related genes and possible regulatory mechanisms in alzheimer’s disease. Front Immunol. 2021;12:768966. doi:10.3389/fimmu.2021.768966
  • Enz LS, Zeis T, Schmid D, et al. Increased HLA-DR expression and cortical demyelination in MS links with HLA-DR15. Neurol Neuroimmunol Neuroinflamm. 2020;7:e656. doi:10.1212/NXI.0000000000000656
  • Magliozzi R, Howell OW, Durrenberger P, et al. Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. J Neuroinflammation. 2019;16:259. doi:10.1186/s12974-019-1650-x
  • Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–457. doi:10.1038/nmeth.3337
  • Liberzon A, Birger C, Thorvaldsdóttir H, et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–425. doi:10.1016/j.cels.2015.12.004
  • Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7. doi:10.1186/1471-2105-14-7
  • Ye Y, Dai Q, Qi H. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell Death Discov. 2021;7:71. doi:10.1038/s41420-021-00451-x
  • Karki R, Kanneganti TD. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer. 2019;19:197–214. doi:10.1038/s41568-019-0123-y
  • Tang Y, Liang M, Tao L, et al. Machine learning-based diagnostic evaluation of shear-wave elastography in BI-RADS category 4 breast cancer screening: a multicenter, retrospective study. Quant Imaging Med Surg. 2022;12:1223–1234. doi:10.21037/qims-21-341
  • Xie R, Liu L, Lu X, et al. Identification of the diagnostic genes and immune cell infiltration characteristics of gastric cancer using bioinformatics analysis and machine learning. Front Genet. 2022;13:1067524. doi:10.3389/fgene.2022.1067524
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–15550. doi:10.1073/pnas.0506580102
  • Sticht C, De La Torre C, Parveen A, et al. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One. 2018;13:e0206239. doi:10.1371/journal.pone.0206239
  • Yeh IJ, Liu KT, Shen JH, et al. Identification of the potential prognostic markers from the miRNA-lncRNA-mRNA interactions for metastatic renal cancer via next-generation sequencing and bioinformatics. Diagnostics. 2020;10:228. doi:10.3390/diagnostics10040228
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi:10.1101/gr.1239303
  • Grajchen E, Hendriks JJA, Bogie JFJ. The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol Commun. 2018;6:124. doi:10.1186/s40478-018-0628-8
  • Bar-Or A, Li R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol. 2021;20:470–483. doi:10.1016/S1474-4422(21)00063-6
  • Piacente F, Bottero M, Benzi A, et al. Neuroprotective potential of dendritic cells and sirtuins in multiple sclerosis. Int J Mol Sci. 2022;23:4352. doi:10.3390/ijms23084352
  • Jensen IJ, Jensen SN, Sjaastad FV, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. Elife. 2020;9. doi:10.7554/eLife.55800
  • Xie K, Chen YQ, Chai YS, et al. HMGB1 suppress the expression of IL-35 by regulating Naïve CD4+ T cell differentiation and aggravating Caspase-11-dependent pyroptosis in acute lung injury. Int Immunopharmacol. 2021;91:107295. doi:10.1016/j.intimp.2020.107295
  • Hamann I, Unterwalder N, Cardona AE, et al. Analyses of phenotypic and functional characteristics of CX3CR1-expressing natural killer cells. Immunology. 2011;133:62–73. doi:10.1111/j.1365-2567.2011.03409.x
  • Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020;579:415–420. doi:10.1038/s41586-020-2071-9
  • Pinke KH, Zorzella-Pezavento SFG, Lara VS, et al. Should mast cells be considered therapeutic targets in multiple sclerosis? Neural Regen Res. 2020;15:1995–2007. doi:10.4103/1673-5374.282238
  • Ribatti D, Tamma R, Annese T. Mast cells and angiogenesis in multiple sclerosis. Inflamm Res. 2020;69:1103–1110. doi:10.1007/s00011-020-01394-2
  • Bonnekoh H, Scheffel J, Kambe N, et al. The role of mast cells in autoinflammation. Immunol Rev. 2018;282:265–275. doi:10.1111/imr.12633
  • De Bondt M, Hellings N, Opdenakker G, et al. Neutrophils: underestimated players in the pathogenesis of multiple sclerosis (MS). Int J Mol Sci. 2020;21:4558. doi:10.3390/ijms21124558
  • de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol. 2019;16:19–27. doi:10.1038/s41423-018-0024-0
  • Dubyak GR, Miller BA, Pearlman E. Pyroptosis in neutrophils: multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev. 2023;314:229–249. doi:10.1111/imr.13186
  • Wen R, Liu YP, Tong XX, et al. Molecular mechanisms and functions of pyroptosis in sepsis and sepsis-associated organ dysfunction. Front Cell Infect Microbiol. 2022;12:962139. doi:10.3389/fcimb.2022.962139
  • Kunzelmann K. Ion channels in regulated cell death. Cell Mol Life Sci. 2016;73:2387–2403. doi:10.1007/s00018-016-2208-z
  • Zheng T, Zhao C, Zhao B, et al. Impairment of the autophagy-lysosomal pathway and activation of pyroptosis in macular corneal dystrophy. Cell Death Discov. 2020;6:85. doi:10.1038/s41420-020-00320-z
  • Shi Y, Yang Y, Xu W, et al. E3 ubiquitin ligase SYVN1 is a key positive regulator for GSDMD-mediated pyroptosis. Cell Death Dis. 2022;13:106. doi:10.1038/s41419-022-04553-x
  • Zhang Y, Liu W, Zhong Y, et al. Metformin corrects glucose metabolism reprogramming and NLRP3 inflammasome-induced pyroptosis via inhibiting the TLR4/NF-κB/PFKFB3 signaling in trophoblasts: implication for a potential therapy of preeclampsia. Oxid Med Cell Longev. 2021;2021:1806344. doi:10.1155/2021/1806344
  • Downs KP, Nguyen H, Dorfleutner A, et al. An overview of the non-canonical inflammasome. Mol Aspects Med. 2020;76:100924. doi:10.1016/j.mam.2020.100924
  • Tian W, Wang Z, Tang NN, et al. Ascorbic acid sensitizes colorectal carcinoma to the cytotoxicity of arsenic trioxide via promoting reactive oxygen species-dependent apoptosis and pyroptosis. Front Pharmacol. 2020;11:123. doi:10.3389/fphar.2020.00123
  • Huang J, Chen P, Xiang Y, et al. Gut microbiota dysbiosis-derived macrophage pyroptosis causes polycystic ovary syndrome via steroidogenesis disturbance and apoptosis of granulosa cells. Int Immunopharmacol. 2022;107:108717. doi:10.1016/j.intimp.2022.108717
  • Freeman L, Guo H, David CN, et al. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med. 2017;214:1351–1370. doi:10.1084/jem.20150237
  • Shao S, Chen C, Shi G, et al. Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol Ther. 2021;227:107880. doi:10.1016/j.pharmthera.2021.107880
  • Pastar I, Sawaya AP, Marjanovic J, et al. Intracellular Staphylococcus aureus triggers pyroptosis and contributes to inhibition of healing due to perforin-2 suppression. J Clin Invest. 2021;131. doi:10.1172/JCI133727
  • Sun J, Li Y. Pyroptosis and respiratory diseases: a review of current knowledge. Front Immunol. 2022;13:920464. doi:10.3389/fimmu.2022.920464
  • Weigt SS, Palchevskiy V, Belperio JA. Inflammasomes and IL-1 biology in the pathogenesis of allograft dysfunction. J Clin Invest. 2017;127:2022–2029. doi:10.1172/JCI93537
  • Guo Q, Wu Y, Hou Y, et al. Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 Inflammasomes are associated with autoimmune thyroiditis. Front Immunol. 2018;9:1197. doi:10.3389/fimmu.2018.01197
  • Karimi E, Azari H, Tahmasebi A, et al. LncRNA-miRNA network analysis across the Th17 cell line reveals biomarker potency of lncRNA NEAT1 and KCNQ1OT1 in multiple sclerosis. J Cell Mol Med. 2022;26:2351–2362. doi:10.1111/jcmm.17256
  • Dastmalchi R, Ghafouri-Fard S, Omrani MD, et al. Dysregulation of long non-coding RNA profile in peripheral blood of multiple sclerosis patients. Mult Scler Relat Disord. 2018;25:219–226. doi:10.1016/j.msard.2018.07.044
  • Gharesouran J, Taheri M, Sayad A, et al. Integrative analysis of OIP5-AS1/HUR1 to discover new potential biomarkers and therapeutic targets in multiple sclerosis. J Cell Physiol. 2019;234:17351–17360. doi:10.1002/jcp.28355
  • Ding Y, Li T, Yan X, et al. Identification of hub lncRNA ceRNAs in multiple sclerosis based on ceRNA mechanisms. Mol Genet Genomics. 2021;296:423–435. doi:10.1007/s00438-020-01750-1
  • Gandhi R, Healy B, Gholipour T, et al. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol. 2013;73:729–740. doi:10.1002/ana.23880
  • Piket E, Zheleznyakova GY, Kular L, et al. Small non-coding RNAs as important players, biomarkers and therapeutic targets in multiple sclerosis: a comprehensive overview. J Autoimmun. 2019;101:17–25. doi:10.1016/j.jaut.2019.04.002
  • Selmaj I, Cichalewska M, Namiecinska M, et al. Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis. Ann Neurol. 2017;81:703–717. doi:10.1002/ana.24931