206
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Serum Metabolomics Analysis of Skin-Involved Systemic Lupus Erythematosus: Association of Anti-SSA Antibodies with Photosensitivity

ORCID Icon, , ORCID Icon, , , , ORCID Icon, , , & ORCID Icon show all
Pages 3811-3822 | Received 16 Jun 2023, Accepted 23 Aug 2023, Published online: 30 Aug 2023

References

  • Yafasova A, Fosbøl EL, Schou M, et al. Long-term cardiovascular outcomes in systemic lupus erythematosus. J Am Coll Cardiol. 2021;77(14):1717–1727. doi:10.1016/j.jacc.2021.02.029
  • Zou YF, Feng CC, Zhu JM, et al. Prevalence of systemic lupus erythematosus and risk factors in rural areas of Anhui Province. Rheumatol Int. 2014;34(3):347–356. doi:10.1007/s00296-013-2902-1
  • Kiriakidou M, Ching CL. Systemic lupus erythematosus. Ann Intern Med. 2020;172(11):Itc81–itc96. doi:10.7326/aitc202006020
  • Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 2020;21(6):605–614. doi:10.1038/s41590-020-0677-6
  • Li M, Zhang W, Leng X, et al. Chinese SLE Treatment and Research group (CSTAR) registry: i. Major clinical characteristics of Chinese patients with systemic lupus erythematosus. Lupus. 2013;22(11):1192–1199. doi:10.1177/0961203313499086
  • Sanders CJ, Van Weelden H, Kazzaz GA, Sigurdsson V, Toonstra J, Bruijnzeel-Koomen CA. Photosensitivity in patients with lupus erythematosus: a clinical and photobiological study of 100 patients using a prolonged phototest protocol. Br J Dermatol. 2003;149(1):131–137. doi:10.1046/j.1365-2133.2003.05379.x
  • Min X, Zheng M, Yu Y, et al. Ultraviolet light induces HERV expression to activate RIG-I signalling pathway in keratinocytes. Exp Dermatol. 2022;31(8):1165–1176. doi:10.1111/exd.14568
  • Pattison DI, Rahmanto AS, Davies MJ. Photo-oxidation of proteins. Photochem Photobiol Sci. 2012;11(1):38–53. doi:10.1039/c1pp05164d
  • Novak GV, Marques M, Balbi V, et al. Anti-RO/SSA and anti-La/SSB antibodies: association with mild lupus manifestations in 645 childhood-onset systemic lupus erythematosus. Autoimmun Rev. 2017;16(2):132–135. doi:10.1016/j.autrev.2016.12.004
  • Stavropoulos PG, Goules AV, Avgerinou G, Katsambas AD. Pathogenesis of subacute cutaneous lupus erythematosus. J Eur Acad Dermatol Venereol. 2008;22(11):1281–1289. doi:10.1111/j.1468-3083.2008.02806.x
  • Tang K-T, Chien H-J, Chang Y-H, Liao T-L, Chen D-Y, Lai -C-C. Metabolic disturbances in systemic lupus erythematosus evaluated with UPLC-MS/MS. Clin Exp Rheumatol. 2021. doi:10.55563/clinexprheumatol/93qonf
  • Wang Y, Guo F, Guo Y, et al. Untargeted lipidomics reveals specific lipid abnormalities in systemic lupus erythematosus. Clin Exp Rheumatol. 2022;40(5):1011–1018. doi:10.55563/clinexprheumatol/ye2ua5
  • Gorczyca D, Szponar B, Paściak M, Czajkowska A, Szmyrka M. Serum levels of n-3 and n-6 polyunsaturated fatty acids in patients with systemic lupus erythematosus and their association with disease activity: a pilot study. Scand J Rheumatol. 2022;51(3):230–236. doi:10.1080/03009742.2021.1923183
  • Zhang W, Zhao H, Du P, et al. Integration of metabolomics and lipidomics reveals serum biomarkers for systemic lupus erythematosus with different organs involvement. Clin Immunol. 2022;241:109057. doi:10.1016/j.clim.2022.109057
  • Li Y, Liang L, Deng X, Zhong L. Lipidomic and metabolomic profiling reveals novel candidate biomarkers in active systemic lupus erythematosus. Int J Clin Exp Pathol. 2019;12(3):857–866.
  • He J, Ma C, Tang D, et al. Absolute quantification and characterization of oxylipins in lupus nephritis and systemic lupus erythematosus. Front Immunol. 2022;13:964901. doi:10.3389/fimmu.2022.964901
  • Li J, Ding H, Meng Y, et al. Taurine metabolism aggravates the progression of lupus by promoting the function of plasmacytoid dendritic cells. Arthritis Rheumatol. 2020;72(12):2106–2117. doi:10.1002/art.41419
  • Zhang Y, Gan L, Tang J, Liu D, Chen G, Xu B. Metabolic profiling reveals new serum signatures to discriminate lupus nephritis from systemic lupus erythematosus. Front Immunol. 2022;13:967371. doi:10.3389/fimmu.2022.967371
  • Guleria A, Pratap A, Dubey D, et al. NMR based serum metabolomics reveals a distinctive signature in patients with Lupus Nephritis. Sci Rep. 2016;6:35309. doi:10.1038/srep35309
  • Kalantari S, Chashmniam S, Nafar M, Zakeri Z, Parvin M. Metabolomics approach reveals urine biomarkers and pathways associated with the pathogenesis of lupus nephritis. Iran J Basic Med Sci. 2019;22(11):1288–1295. doi:10.22038/ijbms.2019.38713.9178
  • Coelewij L, Waddington KE, Robinson GA, et al. Serum metabolomic signatures can predict subclinical atherosclerosis in patients with systemic lupus erythematosus. Arterioscler Thromb Vasc Biol. 2021;41(4):1446–1458. doi:10.1161/atvbaha.120.315321
  • Hammad SM, Harden OC, Wilson DA, Twal WO, Nietert PJ, Oates JC. Plasma sphingolipid profile associated with subclinical atherosclerosis and clinical disease markers of systemic lupus erythematosus: potential predictive value. Front Immunol. 2021;12:694318. doi:10.3389/fimmu.2021.694318
  • Robinson GA, Peng J, Pineda-Torra I, Ciurtin C, Jury EC. Metabolomics defines complex patterns of dyslipidaemia in juvenile-SLE patients associated with inflammation and potential cardiovascular disease risk. Metabolites. 2021;12(1). doi:10.3390/metabo12010003
  • Petri M, Orbai AM, Alarcón GS, et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64(8):2677–2686. doi:10.1002/art.34473
  • Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29(2):288–291.
  • Gladman D, Ginzler E, Goldsmith C, et al. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum. 1996;39(3):363–369. doi:10.1002/art.1780390303
  • Sim JH, Ambler WG, Sollohub IF, et al. Immune cell-stromal circuitry in lupus photosensitivity. J Immunol. 2021;206(2):302–309. doi:10.4049/jimmunol.2000905
  • Hile GA, Coit P, Xu B, et al. Regulation of photosensitivity by the Hippo pathway in Lupus skin. Arthritis Rheumatol. 2023;75(7):1216–1228. doi:10.1002/art.42460
  • Sarkar MK, Hile GA, Tsoi LC, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis. 2018;77(11):1653–1664. doi:10.1136/annrheumdis-2018-213197
  • Klein B, Kunz M. Current concepts of photosensitivity in cutaneous lupus erythematosus. Front Med. 2022;9:939594. doi:10.3389/fmed.2022.939594
  • Skopelja-Gardner S, An J, Tai J, et al. The early local and systemic type I interferon responses to ultraviolet B light exposure are cGAS dependent. Sci Rep. 2020;10(1):7908. doi:10.1038/s41598-020-64865-w
  • Skopelja-Gardner S, Tai J, Sun X, et al. Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc Natl Acad Sci USA. 2021;118(3). doi:10.1073/pnas.2019097118
  • Oke V, Vassilaki I, Espinosa A, et al. High Ro52 expression in spontaneous and UV-induced cutaneous inflammation. J Invest Dermatol. 2009;129(8):2000–2010. doi:10.1038/jid.2008.453
  • Estadt SN, Maz MP, Musai J, Kahlenberg JM. Mechanisms of photosensitivity in autoimmunity. J Invest Dermatol. 2022;142(3 Pt B):849–856. doi:10.1016/j.jid.2021.05.007
  • Salama SA, Arab HH, Omar HA, et al. L-carnitine mitigates UVA-induced skin tissue injury in rats through downregulation of oxidative stress, p38/c-Fos signaling, and the proinflammatory cytokines. Chem Biol Interact. 2018;285:40–47. doi:10.1016/j.cbi.2018.02.034
  • Nagapan TS, Lim WN, Basri DF, Ghazali AR. Oral supplementation of L-glutathione prevents ultraviolet B-induced melanogenesis and oxidative stress in BALB/c mice. Exp Anim. 2019;68(4):541–548. doi:10.1538/expanim.19-0017
  • Morifuji M. The beneficial role of functional food components in mitigating ultraviolet-induced skin damage. Exp Dermatol. 2019;28(Suppl 1):28–31. doi:10.1111/exd.13825
  • Hsieh CC, Lin BF. Dietary factors regulate cytokines in murine models of systemic lupus erythematosus. Autoimmun Rev. 2011;11(1):22–27. doi:10.1016/j.autrev.2011.06.009
  • Jiao H, Acar G, Robinson GA, Ciurtin C, Jury EC, Kalea AZ. Diet and Systemic Lupus Erythematosus (SLE): from supplementation to intervention. Int J Environ Res Public Health. 2022;19(19). doi:10.3390/ijerph191911895
  • Xie Y, Liu B, Wu Z. Identification of serum biomarkers and pathways of systemic lupus erythematosus with skin involvement through GC/MS-Based metabolomics analysis. Clin Cosmet Investig Dermatol. 2022;15:77–86. doi:10.2147/ccid.S345372
  • Fujii M. The pathogenic and therapeutic implications of ceramide abnormalities in atopic dermatitis. Cells. 2021;10(9). doi:10.3390/cells10092386
  • Kleuser B, Bäumer W. Sphingosine 1-phosphate as essential signaling molecule in inflammatory skin diseases. Int J Mol Sci. 2023;24(2). doi:10.3390/ijms24021456
  • Alessandrini F, Pfister S, Kremmer E, Gerber JK, Ring J, Behrendt H. Alterations of glucosylceramide-beta-glucosidase levels in the skin of patients with psoriasis vulgaris. J Invest Dermatol. 2004;123(6):1030–1036. doi:10.1111/j.0022-202X.2004.23469.x
  • Dvergsten JA, Reed AM, Landerman L, Pisetsky DS, Ilkayeva O, Huffman KM. Metabolomics analysis identifies a lipidomic profile in treatment-naïve juvenile dermatomyositis patients vs healthy control subjects. Rheumatology. 2022;61(4):1699–1708. doi:10.1093/rheumatology/keab520
  • Łuczaj W, Jastrząb A, Do Rosário Domingues M, Domingues P, Skrzydlewska E. Changes in phospholipid/ceramide profiles and eicosanoid levels in the plasma of rats irradiated with UV rays and treated topically with cannabidiol. Int J Mol Sci. 2021;22(16). doi:10.3390/ijms22168700
  • Patra V, Bordag N, Clement Y, et al. Ultraviolet exposure regulates skin metabolome based on the microbiome. Sci Rep. 2023;13(1):7207. doi:10.1038/s41598-023-34073-3
  • Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619–634. doi:10.1038/nrc.2016.71
  • Liu M, Yu W, Fang Y, et al. Pyruvate and lactate based hydrogel film inhibits UV radiation-induced skin inflammation and oxidative stress. Int J Pharm. 2023;634:122697. doi:10.1016/j.ijpharm.2023.122697
  • Moon E, Park HM, Lee CH, et al. Dihydrolipoyl dehydrogenase as a potential UVB target in skin epidermis; using an integrated approach of label-free quantitative proteomics and targeted metabolite analysis. J Proteomics. 2015;117:70–85. doi:10.1016/j.jprot.2014.12.016
  • Mazzola MA, Raheja R, Regev K, et al. Monomethyl fumarate treatment impairs maturation of human myeloid dendritic cells and their ability to activate T cells. Mult Scler. 2019;25(1):63–71. doi:10.1177/1352458517740213
  • Saracino AM, Orteu CH. Severe recalcitrant cutaneous manifestations in systemic lupus erythematosus successfully treated with fumaric acid esters. Br J Dermatol. 2017;176(2):472–480. doi:10.1111/bjd.14698