200
Views
0
CrossRef citations to date
0
Altmetric
HYPOTHESIS

The Eradication of Carcinogenic Viruses in Established Solid Cancers

Pages 6227-6239 | Received 12 Jul 2023, Accepted 12 Dec 2023, Published online: 19 Dec 2023

References

  • Vandeven N, Nghiem P. Pathogen-driven cancers and emerging immune therapeutic strategies. Cancer Immunol Res. 2014;2(1):9–14. doi:10.1158/2326-6066.CIR-13-0179
  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. IARC Monogr Eval Carcinog Risks Hum. 2012;100(Pt B):1–441.
  • Ablashi DV, Chatlynne LG, Whitman JE, Cesarman E. Spectrum of Kaposi’s sarcoma-associated herpesvirus, or human herpesvirus 8, diseases. Clin Microbiol Rev. 2002;15(3):439–464. doi:10.1128/CMR.15.3.439-464.2002
  • Kuwamoto S, Higaki H, Kanai K, et al. Association of Merkel cell polyomavirus infection with morphologic differences in Merkel cell carcinoma. Hum Pathol. 2011;42(5):632–640. doi:10.1016/j.humpath.2010.09.011
  • Moore PS, Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer. 2010;10(12):878–889. doi:10.1038/nrc2961
  • Koyama S, Ishii KJ, Coban C, Akira S. Innate immune response to viral infection. Cytokine. 2008;43(3):336–341. doi:10.1016/j.cyto.2008.07.009
  • Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res. 2011;17(9):2619–2627. doi:10.1158/1078-0432.CCR-10-1114
  • Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol. 2018;9:847. doi:10.3389/fimmu.2018.00847
  • Soliman SHA, Orlacchio A, Verginelli F. Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms. 2021;9(6):1179. doi:10.3390/microorganisms9061179
  • Song S, Gong S, Singh P, Lyu J, Bai Y. The interaction between mitochondria and oncoviruses. Biochim Biophys Acta Mol Basis Dis. 2018;1864(2):481–487. doi:10.1016/j.bbadis.2017.09.023
  • Kori M, Arga KY. Pathways involved in viral oncogenesis: new perspectives from virus-host protein interactomics. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165885. doi:10.1016/j.bbadis.2020.165885
  • Çuburu N, Graham BS, Buck CB, et al. Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. J Clin Invest. 2012;122(12):4606–4620. doi:10.1172/JCI63287
  • Abbott RJ, Quinn LL, Leese AM, Scholes HM, Pachnio A, Rickinson AB. CD8+ T cell responses to lytic EBV infection: late antigen specificities as subdominant components of the total response. J Immunol. 2013;191(11):5398–5409. doi:10.4049/jimmunol.1301629
  • Boni C, Fisicaro P, Valdatta C, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol. 2007;81(8):4215–4225. doi:10.1128/JVI.02844-06
  • Wieland D, Kemming J, Schuch A, et al. TCF1+ hepatitis C virus-specific CD8+ T cells are maintained after cessation of chronic antigen stimulation. Nat Commun. 2017;8:15050. doi:10.1038/ncomms15050
  • Lambert M, Gannagé M, Karras A, et al. Differences in the frequency and function of HHV8-specific CD8 T cells between asymptomatic HHV8 infection and Kaposi sarcoma. Blood. 2006;108(12):3871–3880. doi:10.1182/blood-2006-03-014225
  • Wölfl M, Kuball J, Eyrich M, Schlegel PG, Greenberg PD. Use of CD137 to study the full repertoire of CD8+ T cells without the need to know epitope specificities. Cytometry A. 2008;73(11):1043–1049. doi:10.1002/cyto.a.20594
  • Kozako T, Yoshimitsu M, Fujiwara H, et al. PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia. 2009;23(2):375–382. doi:10.1038/leu.2008.272
  • Chatterjee B, Deng Y, Holler A, et al. CD8+ T cells retain protective functions despite sustained inhibitory receptor expression during Epstein-Barr virus infection in vivo. PLoS Pathog. 2019;15(5):e1007748. doi:10.1371/journal.ppat.1007748
  • Clements DM, Crumley B, Chew GM, et al. Phenotypic and Functional Analyses Guiding Combination Immune Checkpoint Immunotherapeutic Strategies in HTLV-1 Infection. Front Immunol. 2021;12:608890. doi:10.3389/fimmu.2021.608890
  • Ma SD, Xu X, Jones R, et al. PD-1/CTLA-4 Blockade Inhibits Epstein-Barr Virus-Induced Lymphoma Growth in a Cord Blood Humanized-Mouse Model. PLoS Pathog. 2016;12(5):e1005642. doi:10.1371/journal.ppat.1005642
  • Blair T, Baird J, Bambina S, et al. ICOS is upregulated on T cells following radiation and agonism combined with radiation results in enhanced tumor control. Sci Rep. 2022;12(1):14954. doi:10.1038/s41598-022-19256-8
  • Derré L, Rivals JP, Jandus C, et al. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest. 2010;120(1):157–167. doi:10.1172/JCI40070
  • Ganusov VV, Lukacher AE, Byers AM. Persistence of viral infection despite similar killing efficacy of antiviral CD8(+) T cells during acute and chronic phases of infection. Virology. 2010;405(1):193–200. doi:10.1016/j.virol.2010.05.029
  • Hibma MH. The immune response to papillomavirus during infection persistence and regression. Open Virol J. 2012;6:241–248. doi:10.2174/1874357901206010241
  • Cheng D, Qiu K, Rao Y, et al. Proliferative exhausted CD8+ T cells exacerbate long-lasting anti-tumor effects in human papillomavirus-positive head and neck squamous cell carcinoma. Elife. 2023;12:e82705. doi:10.7554/eLife.82705
  • Krishna S, Ulrich P, Wilson E, et al. Human Papilloma Virus Specific Immunogenicity and Dysfunction of CD8+ T Cells in Head and Neck Cancer. Cancer Res. 2018;78(21):6159–6170. doi:10.1158/0008-5472.CAN-18-0163
  • Park JJ, Wong DK, Wahed AS, et al. Hepatitis B Research Network. Hepatitis B Virus--Specific and Global T-Cell Dysfunction in Chronic Hepatitis B. Gastroenterology. 2016;150(3):684–695.e5. doi:10.1053/j.gastro.2015.11.050
  • Yang F, Yu X, Zhou C, et al. Hepatitis B e antigen induces the expansion of monocytic myeloid-derived suppressor cells to dampen T-cell function in chronic hepatitis B virus infection. PLoS Pathog. 2019;15(4):e1007690. doi:10.1371/journal.ppat.1007690
  • Hoogeveen RC, Robidoux MP, Schwarz T, et al. Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection. Gut. 2019;68(5):893–904. doi:10.1136/gutjnl-2018-316644
  • Baudi I, Kawashima K, Isogawa M. HBV-Specific CD8+ T-Cell Tolerance in the Liver. Front Immunol. 2021;12:721975. doi:10.3389/fimmu.2021.721975
  • Hofmann M, Tauber C, Hensel N, Thimme R. CD8+ T Cell Responses during HCV Infection and HCC. J Clin Med. 2021;10(5):991. doi:10.3390/jcm10050991
  • Barili V, Fisicaro P, Montanini B, et al. Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection. Nat Commun. 2020;11(1):604. doi:10.1038/s41467-019-14137-7
  • Hensel N, Gu Z, Sagar W, et al. Memory-like HCV-specific CD8+ T cells retain a molecular scar after cure of chronic HCV infection. Nat Immunol. 2021;22(2):229–239. doi:10.1038/s41590-020-00817-w
  • Lepone L, Rappocciolo G, Knowlton E, et al. Monofunctional and polyfunctional CD8+ T cell responses to human herpesvirus 8 lytic and latency proteins. Clin Vaccine Immunol. 2010;17(10):1507–1516. doi:10.1128/CVI.00189-10
  • Ishido S, Wang C, Lee BS, Cohen GB, Jung JU. Downregulation of major histocompatibility complex class I molecules by Kaposi’s sarcoma-associated herpesvirus K3 and K5 proteins. J Virol. 2000;74(11):5300–5309. doi:10.1128/jvi.74.11.5300-5309.2000
  • Coscoy L, Ganem D. Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc Natl Acad Sci U S A. 2000;97(14):8051–8056. doi:10.1073/pnas.140129797
  • Guihot A, Dupin N, Marcelin AG, et al. Low T cell responses to human herpesvirus 8 in patients with AIDS-related and classic Kaposi sarcoma. J Infect Dis. 2006;194(8):1078–1088. doi:10.1086/507648
  • Lidenge SJ, Tso FY, Ngalamika O, et al. Lack of CD8+ T-cell co-localization with Kaposi’s sarcoma-associated herpesvirus infected cells in Kaposi’s sarcoma tumors. Oncotarget. 2020;11(17):1556–1572. doi:10.18632/oncotarget.27569
  • Espíndola OM, Siteur-van Rijnstra E, Frankin E, et al. Early Effects of HTLV-1 Infection on the Activation, Exhaustion, and Differentiation of T-Cells in Humanized NSG Mice. Cells. 2021;10(10):2514. doi:10.3390/cells10102514
  • Hanon E, Stinchcombe JC, Saito M, et al. Fratricide among CD8(+) T lymphocytes naturally infected with human T cell lymphotropic virus type I. Immunity. 2000;13(5):657–664. doi:10.1016/s1074-7613(00)00065-0
  • Maini MK, Gudgeon N, Wedderburn LR, Rickinson AB, Beverley PC. Clonal expansions in acute EBV infection are detectable in the CD8 and not the CD4 subset and persist with a variable CD45 phenotype. J Immunol. 2000;165(10):5729–5737. doi:10.4049/jimmunol.165.10.5729
  • Callan MF, Tan L, Annels N, et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus In vivo. J Exp Med. 1998;187(9):1395–1402. doi:10.1084/jem.187.9.1395
  • Imperiale MJ, Jiang M. Polyomavirus Persistence. Annu Rev Virol. 2016;3(1):517–532. doi:10.1146/annurev-virology-110615-042226
  • Wilson JJ, Pack CD, Lin E, et al. CD8 T cells recruited early in mouse polyomavirus infection undergo exhaustion. J Immunol. 2012;188(9):4340–4348. doi:10.4049/jimmunol.1103727
  • Vezys V, Masopust D, Kemball CC, et al. Continuous recruitment of naive T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection. J Exp Med. 2006;203(10):2263–2269. doi:10.1084/jem.20060995
  • Lei J, Arroyo-Mühr LS, Lagheden C, et al. Human Papillomavirus Infection Determines Prognosis in Cervical Cancer. J Clin Oncol. 2022;40(14):1522–1528. doi:10.1200/JCO.21.01930
  • Zhou P, Yu YF, Lian CL, Wang J, Zhuo RG, Wu SG. Survival Outcomes and Treatment Decision by Human Papillomavirus Status Among Patients With Stage IVC Head and Neck Squamous Cell Carcinoma. Front Oncol. 2021;11:668066. doi:10.3389/fonc.2021.668066
  • Xue X, Liao W, Xing Y. Comparison of clinical features and outcomes between HBV- related and non-B non-C hepatocellular carcinoma. Infect Agent Cancer. 2020;15:11. doi:10.1186/s13027-020-0273-2
  • Omichi K, Shindoh J, Yamamoto S, et al. Postoperative Outcomes for Patients with Non-B Non-C Hepatocellular Carcinoma: a Subgroup Analysis of Patients with a History of Hepatitis B Infection. Ann Surg Oncol. 2015;22 Suppl 3:S1034. doi:10.1245/s10434-015-4845-0
  • Wang X, Liu X, Wang P, et al. Antiviral Therapy Reduces Mortality in Hepatocellular Carcinoma Patients with Low-Level Hepatitis B Viremia. J Hepatocell Carcinoma. 2021;8:1253–1267. doi:10.2147/JHC.S330301
  • Yeh ML, Liang PC, Tsai PC, et al. Characteristics and Survival Outcomes of Hepatocellular Carcinoma Developed after HCV SVR. Cancers (Basel). 2021;13(14):3455. doi:10.3390/cancers13143455
  • Luo Y, Zhang Y, Wang D, Shen D, Che YQ. Eradication of Hepatitis C Virus (HCV) Improves Survival of Hepatocellular Carcinoma Patients with Active HCV Infection - A Real-World Cohort Study. Cancer Manag Res. 2020;12:5323–5330. doi:10.2147/CMAR.S254580
  • Tagkou NM, Goossens N, Negro F. Impact of direct-acting antivirals on the recurrence of hepatocellular carcinoma in chronic hepatitis C. Hepatoma Res. 2022;8:28. doi:10.20517/2394-5079.2022.08
  • Muzica CM, Stanciu C, Huiban L, et al. Hepatocellular carcinoma after direct-acting antiviral hepatitis C virus therapy: a debate near the end. World J Gastroenterol. 2020;26(43):6770–6781. doi:10.3748/wjg.v26.i43.6770
  • Esser S, Schöfer H, Hoffmann C, et al. S1 Guidelines for the Kaposi Sarcoma. J Dtsch Dermatol Ges. 2022;20(6):892–904. doi:10.1111/ddg.14788
  • El Hajj H, Tsukasaki K, Cheminant M, Bazarbachi A, Watanabe T, Hermine O. Novel Treatments of Adult T Cell Leukemia Lymphoma. Front Microbiol. 2020;11:1062. doi:10.3389/fmicb.2020.01062
  • Bazarbachi A, Plumelle Y, Carlos Ramos J, et al. Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol. 2010;28(27):4177–4183. doi:10.1200/JCO.2010.28.0669
  • Nohtani M, Vrzalikova K, Ibrahim M, et al. Impact of Tumour Epstein--Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): a Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL. Cancers (Basel). 2022;14(17):4297. doi:10.3390/cancers14174297
  • Claviez A, Tiemann M, Lüders H, et al. Impact of latent Epstein--Barr virus infection on outcome in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol. 2005;23(18):4048–4056. doi:10.1200/JCO.2005.01.701
  • Alami IE, Gihbid A, Charoute H, et al. Prognostic value of Epstein--Barr virus DNA load in nasopharyngeal carcinoma: a meta-analysis. Pan Afr Med J. 2022;41:6. doi:10.11604/pamj.2022.41.6.28946
  • Yang A, Wijaya WA, Lie Y, et al. The impact of Merkel Cell polyomavirus positivity on prognosis of Merkel cell carcinoma: a systematic review and meta-analysis. Front Oncol. 2022. doi:10.3389/fonc.2022.1020805
  • Hatta MNA, Mohamad Hanif EA, Chin SF, Neoh HM. Pathogens and Carcinogenesis: a Review. Biology (Basel). 2021;10(6):533. doi:10.3390/biology10060533
  • Baral S, Antia R, Dixit NM. A dynamical motif comprising the interactions between antigens and CD8 T cells may underlie the outcomes of viral infections. Proc Natl Acad Sci U S A. 2019;116(35):17393–17398. doi:10.1073/pnas.1902178116
  • Tian L, Zhou W, Wu X, et al. CTLs: killers of intracellular bacteria. Front Cell Infect Microbiol. 2022;12:967679. doi:10.3389/fcimb.2022.967679
  • Schmidt ME, Varga SM. The CD8 T Cell Response to Respiratory Virus Infections. Front Immunol. 2018;9:678. doi:10.3389/fimmu.2018.00678
  • Elkoshi Z. The Binary Model of Chronic Diseases Applied to COVID-19. Front Immunol. 2021;12:716084. doi:10.3389/fimmu.2021.716084
  • Kumagai S, Togashi Y, Kamada T, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol. 2020;21(11):1346–1358. doi:10.1038/s41590-020-0769-3
  • Yang -Z-Z, Grote DM, Ziesmer SC, et al. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Investig. 2012;122:1271–1282. doi:10.1172/JCI59806
  • Josefsson SE, Huse K, Kolstad A, et al. T Cells Expressing Checkpoint Receptor TIGIT Are Enriched in Follicular Lymphoma Tumors and Characterized by Reversible Suppression of T-cell Receptor Signaling. Clin Cancer Res. 2018;24(4):870.
  • Yang -Z-Z, Kim HJ, Villasboas JC, et al. Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma. Oncotarget. 2017;8:61425–61439. doi:10.18632/oncotarget.18251
  • Elkoshi Z. The Binary Classification Of Chronic Diseases. J Inflamm Res. 2019;12:319–333. doi:10.2147/JIR.S227279
  • Cárdenas D, Vélez G, Orfao A, et al. Epstein-Barr virus-specific CD8(+) T lymphocytes from diffuse large B cell lymphoma patients are functionally impaired. Clin Exp Immunol. 2015;182(2):173–183. doi:10.1111/cei.12682
  • Miao BP, Zhang RS, Li M, et al. Nasopharyngeal cancer-derived microRNA-21 promotes immune suppressive B cells. Cell Mol Immunol. 2015;12(6):750–756. doi:10.1038/cmi.2014.129
  • Zheng X, Huang Y, Li K, Luo R, Cai M, Yun J. Immunosuppressive Tumor Microenvironment and Immunotherapy of Epstein-Barr Virus-Associated Malignancies. Viruses. 2022;14(5):1017. doi:10.3390/v14051017
  • Rentsch CA, Birkhäuser FD, Biot C, et al. Bacillus Calmette-Guérin strain differences have an impact on clinical outcome in bladder cancer immunotherapy. Eur Urol. 2014;66(4):677–688. doi:10.1016/j.eururo.2014.02.061
  • Brandau S, Suttmann H. Thirty years of BCG immunotherapy for non-muscle invasive bladder cancer: a success story with room for improvement. Biomed Pharmacother. 2007;61(6):299–305. doi:10.1016/j.biopha.2007.05.004
  • Kumar NP, Padmapriyadarsini C, Rajamanickam A, et al. BCG vaccination induces enhanced frequencies of memory T cells and altered plasma levels of common γc cytokines in elderly individuals. PLoS One. 2021;16(11):e0258743. doi:10.1371/journal.pone.0258743
  • Chai Q, Zhang Y, Liu CH. Mycobacterium tuberculosis: an Adaptable Pathogen Associated With Multiple Human Diseases. Front Cell Infect Microbiol. 2018;8:158. doi:10.3389/fcimb.2018.00158
  • Cross ML, Aldwell FE, Griffin JF, Mackintosh CG. Intracellular survival of virulent Mycobacterium bovis and M. bovis BCG in ferret macrophages. Vet Microbiol. 1999;66(3):235–243. doi:10.1016/s0378-1135(99)00011-5
  • Nolz JC. Molecular mechanisms of CD8(+) T cell trafficking and localization. Cell Mol Life Sci. 2015;72(13):2461–2473. doi:10.1007/s00018-015-1835-0
  • Immunity to Infection. Primer to the Immune Response. 2014:295–332. doi:10.1016/B978-0-12-385245-8.00013-3
  • Oh JD, Karam SM, Gordon JI. Intracellular Helicobacter pylori in gastric epithelial progenitors. Proc Natl Acad Sci U S A. 2005;102(14):5186–5191. doi:10.1073/pnas.0407657102
  • Deng R, Zheng H, Cai H, Li M, Shi Y, Ding S. Effects of helicobacter pylori on tumor microenvironment and immunotherapy responses. Front Immunol. 2022;13:923477. doi:10.3389/fimmu.2022.923477
  • Xue LJ, Mao XB, Liu XB, et al. Activation of CD3+ T cells by Helicobacter pylori DNA vaccines in potential immunotherapy of gastric carcinoma. Cancer Biol Ther. 2019;20(6):866–876. doi:10.1080/15384047.2019.1579957
  • Ramachandran M, Jin C, Yu D, Eriksson F, Essand M. Vector-encoded Helicobacter pylori neutrophil-activating protein promotes maturation of dendritic cells with Th1 polarization and improved migration. J Immunol. 2014;193(5):2287–2296. doi:10.4049/jimmunol.1400339
  • Tan MP, Pedersen J, Zhan Y, et al. CD8+ T cells are associated with severe gastritis in Helicobacter pylori-infected mice in the absence of CD4+ T cells. Infect Immun. 2008;76(3):1289–1297. doi:10.1128/IAI.00779-07
  • Koch MRA, Gong R, Friedrich V, et al. CagA-specific Gastric CD8+ Tissue-Resident T Cells Control Helicobacter pylori During the Early Infection Phase. Gastroenterology. 2023;164(4):550–566. doi:10.1053/j.gastro.2022.12.016
  • Shirai M, Arichi T, Nakazawa T, Berzofsky JA. Persistent infection by Helicobacter pylori down-modulates virus-specific CD8+ cytotoxic T cell response and prolongs viral infection. J Infect Dis. 1998;177(1):72–80. doi:10.1086/513827
  • Jia Z, Zheng M, Jiang J, et al. Positive H. pylori status predicts better prognosis of non-cardiac gastric cancer patients: results from cohort study and meta-analysis. BMC Cancer. 2022;22(1):155. doi:10.1186/s12885-022-09222-y
  • Ruskoné-Fourmestraux A, Fischbach W, Aleman BM, et al.; EGILS group. EGILS consensus report. Gastric extranodal marginal zone B-cell lymphoma of MALT. Gut. 2011;60(6):747–758. doi:10.1136/gut.2010.224949
  • Xie Q, Ding J, Chen Y. Role of CD8+ T lymphocyte cells: interplay with stromal cells in tumor microenvironment. Acta Pharm Sin B. 2021;11(6):1365–1378. doi:10.1016/j.apsb.2021.03.027
  • Wang J, Ke XY. The four types of Tregs in malignant lymphomas. J Hematol Oncol. 2011;4:50. doi:10.1186/1756-8722-4-50
  • Bai Y, He T, Zhang L, et al. Prognostic value of FOXP3+ regulatory T cells in patients with diffuse large B-et al. lymphoma: a systematic review and meta-analysis. BMJ Open. 2022;12(9):e060659. doi:10.1136/bmjopen-2021-060659
  • Elkoshi Z. “High Treg” Inflammations Promote (Most) Non-Hematologic Cancers While “Low Treg” Inflammations Promote Lymphoid Cancers. J Inflamm Res. 2020;13:209–221. doi:10.2147/JIR.S249384
  • Carreras J, Lopez-Guillermo A, Fox BC, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood. 2006;108(9):2957–2964. doi:10.1182/blood-2006-04-018218
  • D’Arena G, Vitale C, Coscia M, et al. Regulatory T Cells and Their Prognostic Relevance in Hematologic Malignancies. J Immunol Res. 2017;2017:1832968. doi:10.1155/2017/1832968
  • Menéndez V, Solórzano JL, Fernández S, Montalbán C, García JF. The Hodgkin Lymphoma Immune Microenvironment: turning Bad News into Good. Cancers (Basel). 2022;14(5):1360. doi:10.3390/cancers14051360
  • Elkoshi Z. On the Prognostic Power of Tumor-Infiltrating Lymphocytes - A Critical Commentary. Front Immunol. 2022;13:892543. doi:10.3389/fimmu.2022.892543
  • Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM. Attenuation of CD8(+) T-cell function by CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin’s lymphoma. Cancer Res. 2006;66(20):10145–10152. doi:10.1158/0008-5472.CAN-06-1822
  • Yang ZZ, Grote DM, Ziesmer SC, et al. Soluble and membrane-bound TGF-β-mediated regulation of intratumoral T cell differentiation and function in B-cell non-Hodgkin lymphoma. PLoS One. 2013;8(3):e59456. doi:10.1371/journal.pone.0059456
  • Greenbaum AM, Fromm JR, Gopal AK, Houghton AM. Diffuse large B-cell lymphoma (DLBCL) is infiltrated with activated CD8+ T-cells despite immune checkpoint signaling. Blood Res. 2022;57(2):117–128. doi:10.5045/br.2022.2021145
  • Autio M, Leivonen SK, Brück O, et al. Immune cell constitution in the tumor microenvironment predicts the outcome in diffuse large B-cell lymphoma. Haematologica. 2021;106(3):718–729. doi:10.3324/haematol.2019.243626
  • Takeuchi M, Miyoshi H, Ohshima K. Tumor microenvironment of adult T-cell leukemia/lymphoma. J Clin Exp Hematop. 2021;61(4):202–209. doi:10.3960/jslrt.21007