128
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Analysis and Verification of Glycosylation Characteristics of Septic Acute Kidney Injury

&
Pages 5881-5897 | Received 22 Sep 2023, Accepted 28 Nov 2023, Published online: 05 Dec 2023

References

  • Kellum JA, Chawla LS, Keener C, et al. The effects of alternative resuscitation strategies on acute kidney injury in patients with septic shock. Am J Respir Crit Care Med. 2016;193(3):281–287. doi:10.1164/rccm.201505-0995OC
  • Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96(5):1083–1099. doi:10.1016/j.kint.2019.05.026
  • Zhang Z. Biomarkers, diagnosis and management of sepsis-induced acute kidney injury: a narrative review. Heart Lung Vessel. 2015;7(1):64–73.
  • Lee J, Levy MM. Treatment of patients with severe sepsis and septic shock: current evidence-based practices. R I Med J. 2019;102(10):18–21.
  • Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585. doi:10.1136/bmj.i1585
  • Heindel DW, Chen S, Aziz PV, et al. Glycomic analysis reveals a conserved response to bacterial sepsis induced by different bacterial pathogens. ACS Infect Dis. 2022;8(5):1075–1085. doi:10.1021/acsinfecdis.2c00082
  • Kim DG, Baek I, Lee Y, et al. Structural basis for SdgB- and SdgA-mediated glycosylation of staphylococcal adhesive proteins. Acta Crystallogr D Struct Biol. 2021;77(Pt 11):1460–1474. doi:10.1107/S2059798321010068
  • Čaval T, Lin Y-H, Varkila M, et al. Glycoproteoform profiles of individual patients’ plasma alpha-1-antichymotrypsin are unique and extensively remodeled following a septic episode. Front Immunol. 2020;11:608466. doi:10.3389/fimmu.2020.608466
  • Novokmet M, Lukić E, Vučković F, et al. Changes in IgG and total plasma protein glycomes in acute systemic inflammation. Sci Rep. 2014;4(1):4347. doi:10.1038/srep04347
  • Joenvaara S, Saraswat M, Kuusela P, et al. Quantitative N-glycoproteomics reveals altered glycosylation levels of various plasma proteins in bloodstream infected patients. PLoS One. 2018;13(3):e0195006. doi:10.1371/journal.pone.0195006
  • Larsen MD, de Graaf EL, Sonneveld ME, et al. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science. 2021;371(6532):6532. doi:10.1126/science.abc8378
  • de Haan N, Boeddha NP, Ekinci E, et al. Differences in IgG Fc glycosylation are associated with outcome of pediatric meningococcal sepsis. mBio. 2018;9(3). doi:10.1128/mBio.00546-18
  • DeCoux A, Tian Y, DeLeon-Pennell KY, et al. Plasma glycoproteomics reveals sepsis outcomes linked to distinct proteins in common pathways. Crit Care Med. 2015;43(10):2049–2058. doi:10.1097/CCM.0000000000001134
  • Kim YH, Kwak MS, Park JB, et al. N-linked glycosylation plays a crucial role in the secretion of HMGB1. J Cell Sci. 2016;129(1):29–38. doi:10.1242/jcs.176412
  • Radovani B, Gudelj I. N-Glycosylation and inflammation; the not-so-sweet relation. Front Immunol. 2022;13:893365. doi:10.3389/fimmu.2022.893365
  • Suzuki H, Novak J. IgA glycosylation and immune complex formation in IgAN. Semin Immunopathol. 2021;43(5):669–678. doi:10.1007/s00281-021-00883-8
  • Dotz V, Lemmers RFH, Reiding KR, et al. Plasma protein N-glycan signatures of type 2 diabetes. Biochim Biophys Acta Gen Subj. 2018;1862(12):2613–2622. doi:10.1016/j.bbagen.2018.08.005
  • Memarian E, ‘t Hart LM, Slieker RC, et al. Plasma protein N- glycosylation is associated with cardiovascular disease, nephropathy, and retinopathy in type 2 diabetes. BMJ Open Diabetes Res Care. 2021;9(1):e002345. doi:10.1136/bmjdrc-2021-002345
  • Santorelli L, Capitoli G, Chinello C, et al. In-depth mapping of the urinary N-glycoproteome: distinct signatures of ccRCC-related progression. Cancers. 2020;12(1):239. doi:10.3390/cancers12010239
  • Kim JH. Bioinformatics and genomic medicine. Genet Med. 2002;4(6 Suppl):62s–65s. doi:10.1097/00125817-200211001-00013
  • Prokop JW, May T, Strong K, et al. Genome sequencing in the clinic: the past, present, and future of genomic medicine. Physiol Genomics. 2018;50(8):563–579. doi:10.1152/physiolgenomics.00046.2018
  • Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14.
  • Huang M-L, Hung Y-H, Lee WM, et al. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. ScientificWorldJournal. 2014;2014:795624. doi:10.1155/2014/795624
  • McEligot AJ, Poynor V, Sharma R, et al. Logistic LASSO regression for dietary intakes and breast cancer. Nutrients. 2020;12(9):2652. doi:10.3390/nu12092652
  • Somsuan K, Aluksanasuwan S. Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma. Genomics Inform. 2023;21(2):e22. doi:10.5808/gi.23013
  • Devuyst O, Bochud M, Olinger E. UMOD and the architecture of kidney disease. Pflugers Arch. 2022;474(8):771–781. doi:10.1007/s00424-022-02733-4
  • Koca D, Séraudie I, Jardillier R, et al. COL7A1 expression improves prognosis prediction for patients with clear cell renal cell carcinoma atop of stage. Cancers. 2023;15(10):2701. doi:10.3390/cancers15102701
  • Wu J, Miao C, Wang Y, et al. SPTBN1 abrogates renal clear cell carcinoma progression via glycolysis reprogramming in a GPT2-dependent manner. J Transl Med. 2022;20(1):603. doi:10.1186/s12967-022-03805-w
  • Shi R, Wang J, Zhang Z, et al. ASGR1 promotes liver injury in sepsis by modulating monocyte-to-macrophage differentiation via NF-κB/ATF5 pathway. Life Sci. 2023;315:121339. doi:10.1016/j.lfs.2022.121339
  • Summers SA, Chan J, Gan P-Y, et al. Mast cells mediate acute kidney injury through the production of TNF. J Am Soc Nephrol. 2011;22(12):2226–2236. doi:10.1681/ASN.2011020182
  • Huen SC, Cantley LG. Macrophages in renal injury and repair. Annu Rev Physiol. 2017;79(1):449–469. doi:10.1146/annurev-physiol-022516-034219