104
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Fibroblast Insights into the Pathogenesis of Ankylosing Spondylitis

, , , ORCID Icon, , , & show all
Pages 6301-6317 | Received 07 Oct 2023, Accepted 03 Dec 2023, Published online: 21 Dec 2023

References

  • Braun J, Sieper J. Ankylosing spondylitis. Lancet. 2007;369(9570):1379–1390. doi:10.1016/S0140-6736(07)60635-7
  • de Winter JJ, van Mens LJ, van der Heijde D, Landewé R, Baeten DL. Prevalence of peripheral and extra-articular disease in ankylosing spondylitis versus non-radiographic axial spondyloarthritis: a meta-analysis. Arthritis Res Ther. 2016;18(1):196. doi:10.1186/s13075-016-1093-z
  • Navarro-Compán V, Sepriano A, El-Zorkany B, et al. Axial spondyloarthritis. Ann Rheum Dis. 2021;80(12):1511–1521. doi:10.1136/annrheumdis-2021-221035
  • Mauro D, Thomas R, Guggino G, Lories R, Brown MA, Ciccia F. Ankylosing spondylitis: an autoimmune or autoinflammatory disease?. Nat Rev Rheumatol. 2021;17(7):387–404. doi:10.1038/s41584-021-00625-y
  • Baraliakos X, Listing J, Rudwaleit M, Sieper J, Braun J. The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. Arthritis Res Ther. 2008;10(5):R104. doi:10.1186/ar2496
  • Shao F, Liu Q, Zhu Y, et al. Targeting chondrocytes for arresting bony fusion in ankylosing spondylitis. Nat Commun. 2021;12(1):6540. doi:10.1038/s41467-021-26750-6
  • Sieper J, Rudwaleit M, Baraliakos X, et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis. 2009;68(Suppl 2):ii1–i44. doi:10.1136/ard.2008.104018
  • Min Wang D, Lin L, Hua Peng J, et al. Pannus inflammation in sacroiliitis following immune pathological injury and radiological structural damage: a study of 193 patients with spondyloarthritis. Arthritis Res Ther. 2018;20(1):120. doi:10.1186/s13075-018-1594-z
  • François RJ, Gardner DL, Degrave EJ, Bywaters EGL. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis: systematic study of specimens from patients and control subjects. Arthritis Rheum. 2000;43(9):2011–2024. doi:10.1002/1529-0131(200009)43:9<2011::AID-ANR12>3.0.CO;2-Y
  • Bleil J, Maier R, Hempfing A, et al. Histomorphologic and histomorphometric characteristics of zygapophyseal joint remodeling in ankylosing spondylitis. Arthritis Rheumatol. 2014;66(7):1745–1754. doi:10.1002/art.38404
  • Sieper J, Appel H, Braun J, Rudwaleit M. Critical appraisal of assessment of structural damage in ankylosing spondylitis: implications for treatment outcomes. Arthritis Rheum. 2008;58(3):649–656. doi:10.1002/art.23260
  • Bleil J, Maier R, Hempfing A, Sieper J, Appel H, Syrbe U. Granulation tissue eroding the subchondral bone also promotes new bone formation in ankylosing spondylitis. Arthritis Rheumatol. 2016;68(10):2456–2465. doi:10.1002/art.39715
  • Lories RJ, Luyten FP. Activated fibrocytes: circulating cells that populate the arthritic synovium? Rheumatology. 2010;49(4):617–618. doi:10.1093/rheumatology/kep365
  • Lories RJU, Matthys P, de Vlam K, Derese I, Luyten FP. Ankylosing enthesitis, dactylitis, and onychoperiostitis in male DBA/1 mice: a model of psoriatic arthritis. Ann Rheum Dis. 2004;63(5):595–598. doi:10.1136/ard.2003.013599
  • Yang M, Yuan H, Miao M, Xu W. The osteogenic potential of ligament fibroblasts is greater in ankylosing spondylitis patients than in patients with osteoarthritis. Zeitschrift fur Rheumatol. 2015;74(4):340–345. doi:10.1007/s00393-014-1394-z
  • Jiang N, Liu H-X, Liang H-Y, Feng X-H, Liu B-Y, Zhou Y-Y. Osteogenic differentiation characteristics of Hip joint capsule fibroblasts obtained from patients with ankylosing spondylitis. Ann Transl Med. 2021;9(4):331. doi:10.21037/atm-20-7817
  • Buechler MB, Pradhan RN, Krishnamurty AT, et al. Cross-tissue organization of the fibroblast lineage. Nature. 2021;593(7860):575–579. doi:10.1038/s41586-021-03549-5
  • Neumann E, Lefèvre S, Zimmermann B, et al. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med. 2010;16(10):458–468. doi:10.1016/j.molmed.2010.07.004
  • Zhang X-P, Jian-Da M, Ying-Qian M, et al. Addition of fibroblast-stromal cell markers to immune synovium pathotypes better predicts radiographic progression at 1 year in active rheumatoid arthritis. Front Immunol. 2021;12:778480. doi:10.3389/fimmu.2021.778480
  • Qin X, Zhu B, Jiang T, et al. miR-17-5p regulates heterotopic ossification by targeting ANKH in ankylosing spondylitis. Mol Ther Nucleic Acids. 2019;18:696–707. doi:10.1016/j.omtn.2019.10.003
  • Yeremenko N, Noordenbos T, Cantaert T, et al. Disease-specific and inflammation-independent stromal alterations in spondylarthritis synovitis. Arthritis Rheum. 2013;65(1):174–185. doi:10.1002/art.37704
  • Mauro D, Simone D, Bucci L, Ciccia F. Novel immune cell phenotypes in spondyloarthritis pathogenesis. Semi Immunopathol. 2021;43(2):265–277. doi:10.1007/s00281-021-00837-0
  • Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat Rev Rheumatol. 2022;18(7):415–429. doi:10.1038/s41584-022-00793-5
  • Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol. 2020;16(6):316–333. doi:10.1038/s41584-020-0413-5
  • Chu C-Q. Highlights of strategies targeting fibroblasts for novel therapies for rheumatoid arthritis. Front Med. 2022;9:846300. doi:10.3389/fmed.2022.846300
  • Teitelbaum SL, Patrick Ross F. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–649. doi:10.1038/nrg1122
  • Canalis E. Notch signaling in osteoblasts. Sci Signal. 2008;1(17):e17. doi:10.1126/stke.117pe17
  • Nakahama K-I. Cellular communications in bone homeostasis and repair. Cell Mol Life Sci. 2010;67(23):4001–4009. doi:10.1007/s00018-010-0479-3
  • Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science. 2000;289(5484):1501–1504. doi:10.1126/science.289.5484.1501
  • Correa‐Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev. 2021;302(1):147–162. doi:10.1111/imr.12972
  • Bollow M, Fischer T, Reisshauer H, et al. Quantitative analyses of sacroiliac biopsies in spondyloarthropathies: t cells and macrophages predominate in early and active sacroiliitis- cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann Rheum Dis. 2000;59(2):135–140. doi:10.1136/ard.59.2.135
  • Appel H, Kuhne M, Spiekermann S, et al. Immunohistochemical analysis of Hip arthritis in ankylosing spondylitis: evaluation of the bone-cartilage interface and subchondral bone marrow. Arthritis Rheum. 2006;54(6):1805–1813. doi:10.1002/art.21907
  • Keffer J, Probert L, Cazlaris H, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 1991;10(13):4025–4031. doi:10.1002/j.1460-2075.1991.tb04978.x
  • Ward MM, Bruckel J, Colbert R, et al. Summary of the 2005 annual research and education meeting of the Spondyloarthritis Research and Therapy Network (SPARTAN). J Rheumatol. 2006;33(5):978–982.
  • Péntek M, Poór G, Wiland P, et al. Biological therapy in inflammatory rheumatic diseases: issues in Central and Eastern European countries. Eur J Health Econom. 2014;15(Suppl 1):S35–S43. doi:10.1007/s10198-014-0592-6
  • Baji P, Péntek M, Szántó S, et al. Comparative efficacy and safety of biosimilar infliximab and other biological treatments in ankylosing spondylitis: systematic literature review and meta-analysis. Eur J Health Econom. 2014;15(Suppl 1):S45–S52. doi:10.1007/s10198-014-0593-5
  • Danve A, Deodhar A. Treatment of axial spondyloarthritis: an update. Nat Rev Rheumatol. 2022;18(4):205–216. doi:10.1038/s41584-022-00761-z
  • Deodhar A, David Y. Switching tumor necrosis factor inhibitors in the treatment of axial spondyloarthritis. Semin Arthritis Rheumatism. 2017;47(3):343–350. doi:10.1016/j.semarthrit.2017.04.005
  • Baeten D, Baraliakos X, Braun J, et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9906):1705–1713. doi:10.1016/S0140-6736(13)61134-4
  • van der Heijde D, Song I-H, Pangan AL, et al. Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis (SELECT-AXIS 1): a multicentre, randomised, double-blind, placebo-controlled, Phase 2/3 trial. Lancet. 2019;394(10214):2108–2117. doi:10.1016/S0140-6736(19)32534-6
  • Appel H, Maier R, Peihua W, et al. Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther. 2011;13(3):R95. doi:10.1186/ar3370
  • Sieper J, Poddubnyy D, Miossec P. The IL-23-IL-17 pathway as a therapeutic target in axial spondyloarthritis. Nat Rev Rheumatol. 2019;15(12):747–757. doi:10.1038/s41584-019-0294-7
  • Wei K, Nguyen HN, Brenner MB. Fibroblast pathology in inflammatory diseases. J Clin Invest. 2021;131(20). doi:10.1172/JCI149538
  • Peng J, Gong Y, Zhang Y, Wang D, Xiao Z. Immunohistological analysis of active sacroiliitis in patients with axial spondyloarthritis. Medicine. 2017;96(16):e6605. doi:10.1097/MD.0000000000006605
  • Appel H, Kuhne M, Spiekermann S, et al. Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum. 2006;54(9):2845–2851. doi:10.1002/art.22060
  • Kruithof E, Baeten D, Van den Bosch F, Mielants H, Veys EM, De Keyser F. Histological evidence that infliximab treatment leads to downregulation of inflammation and tissue remodelling of the synovial membrane in spondyloarthropathy. Ann Rheum Dis. 2005;64(4):529–536. doi:10.1136/ard.2003.018549
  • Song IH, Heldmann F, Rudwaleit M, et al. Different response to rituximab in tumor necrosis factor blocker-naive patients with active ankylosing spondylitis and in patients in whom tumor necrosis factor blockers have failed: a twenty-four-week clinical trial. Arthritis Rheum. 2010;62(5):1290–1297. doi:10.1002/art.27383
  • Liu L, Yuan Y, Zhang S, Jiake X, Zou J. Osteoimmunological insights into the pathogenesis of ankylosing spondylitis. J Cell Physiol. 2021;236(9):6090–6100. doi:10.1002/jcp.30313
  • Cambré I, Gaublomme D, Burssens A, et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat Commun. 2018;9(1):4613. doi:10.1038/s41467-018-06933-4
  • Gibbons LJ, Hyrich KL. Biologic therapy for rheumatoid arthritis: clinical efficacy and predictors of response. BioDrugs. 2009;23(2):111–124. doi:10.2165/00063030-200923020-00004
  • Batko B, Maga P, Urbanski K, et al. Microvascular dysfunction in ankylosing spondylitis is associated with disease activity and is improved by anti-TNF treatment. Sci Rep. 2018;8(1):13205. doi:10.1038/s41598-018-31550-y
  • Miotla J, Maciewicz R, Kendrew J, Feldmann M, Paleolog E. Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab Invest. 2000;80(8):1195–1205. doi:10.1038/labinvest.3780127
  • Liu C-H, Raj S, Chen C-H, et al. HLA-B27-mediated activation of TNAP phosphatase promotes pathogenic syndesmophyte formation in ankylosing spondylitis. J Clin Invest. 2019;129(12):5357–5373. doi:10.1172/JCI125212
  • Saetia K, Cho D, Lee S, Kim DH, Kim SD. Ossification of the posterior longitudinal ligament: a review. Neurosurgical Focus. 2011;30(3):E1. doi:10.3171/2010.11.FOCUS10276
  • Le HV, Wick JB, Van BW, Klineberg EO. Ossification of the posterior longitudinal ligament: pathophysiology, diagnosis, and management. J Am Aca Orthopa Surg. 2022;30(17):820–830. doi:10.5435/JAAOS-D-22-00049
  • Braun J, Sieper J, Bollow M. Imaging of sacroiliitis. Clin Rheumatol. 2000;19(1):51–57. doi:10.1007/s100670050011
  • Laloo F, Herregods N, Jaremko JL, et al. MRI of the axial skeleton in spondyloarthritis: the many faces of new bone formation. Insights Imaging. 2019;10(1):67. doi:10.1186/s13244-019-0752-4
  • Tam L-S, Jieruo G, David Y. Pathogenesis of ankylosing spondylitis. Nat Rev Rheumatol. 2010;6(7):399–405. doi:10.1038/nrrheum.2010.79
  • Gravallese EM, Schett G. Effects of the IL-23-IL-17 pathway on bone in spondyloarthritis. Nat Rev Rheumatol. 2018;14(11):631–640. doi:10.1038/s41584-018-0091-8
  • Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–176. doi:10.1016/S0092-8674(00)81569-X
  • Danks L, Komatsu N, Guerrini MM, et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis. 2016;75(6):1187–1195. doi:10.1136/annrheumdis-2014-207137
  • Baraliakos X, Boehm H, Bahrami R, et al. What constitutes the fat signal detected by MRI in the spine of patients with ankylosing spondylitis? A prospective study based on biopsies obtained during planned spinal osteotomy to correct hyperkyphosis or spinal stenosis. Ann Rheum Dis. 2019;78(9):1220–1225. doi:10.1136/annrheumdis-2018-214983
  • Osta B, Lavocat F, Eljaafari A, Miossec P. Effects of Interleukin-17A on osteogenic differentiation of isolated human mesenchymal stem cells. Front Immunol. 2014;5:425. doi:10.3389/fimmu.2014.00425
  • Shin HR, Kim BS, Kim HJ, et al. Excessive osteoclast activation by osteoblast paracrine factor RANKL is a major cause of the abnormal long bone phenotype in Apert syndrome model mice. J Cell Physiol. 2022;237(4):2155–2168.
  • Vandooren B, Cantaert T, Noordenbos T, Tak PP, Baeten D. The abundant synovial expression of the RANK/RANKL/Osteoprotegerin system in peripheral spondylarthritis is partially disconnected from inflammation. Arthritis Rheum. 2008;58(3):718–729. doi:10.1002/art.23290
  • Bharadwaz A, Jayasuriya AC. Osteogenic differentiation cues of the bone morphogenetic protein-9 (BMP-9) and its recent advances in bone tissue regeneration. Mater Sci Eng C. 2021;120:111748. doi:10.1016/j.msec.2020.111748
  • Maksymowych WP, Wichuk S, Chiowchanwisawakit P, Lambert RG, Pedersen SJ. Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis. Arthritis Rheumatol. 2014;66(11):2958–2967. doi:10.1002/art.38792
  • Chiowchanwisawakit P, Lambert RGW, Conner-Spady B, Maksymowych WP. Focal fat lesions at vertebral corners on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis. Arthritis Rheum. 2011;63(8):2215–2225. doi:10.1002/art.30393
  • Baraliakos X, Heldmann F, Callhoff J, et al. Which spinal lesions are associated with new bone formation in patients with ankylosing spondylitis treated with anti-TNF agents? A long-term observational study using MRI and conventional radiography. Ann Rheum Dis. 2014;73(10):1819–1825. doi:10.1136/annrheumdis-2013-203425
  • Wei-Dong X, Yang X-Y, Da-He L, et al. Up-regulation of fatty acid oxidation in the ligament as a contributing factor of ankylosing spondylitis: a comparative proteomic study. J proteo. 2015;113:57–72. doi:10.1016/j.jprot.2014.09.014
  • Plikus MV, Guerrero-Juarez CF, Ito M, et al. Regeneration of fat cells from myofibroblasts during wound healing. Science. 2017;355(6326):748–752. doi:10.1126/science.aai8792
  • van der Heijde D, Landewé R, Baraliakos X, et al. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum. 2008;58(10):3063–3070. doi:10.1002/art.23901
  • van der Heijde D, Landewé R, Einstein S, et al. Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum. 2008;58(5):1324–1331. doi:10.1002/art.23471
  • van der Heijde D, Salonen D, Weissman BN, et al. Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with Adalimumab for up to 2 years. Arthritis Res Ther. 2009;11(4):R127. doi:10.1186/ar2794
  • Braun J, Baraliakos X, Hermann K-GA, et al. The effect of two golimumab doses on radiographic progression in ankylosing spondylitis: results through 4 years of the GO-RAISE trial. Ann Rheum Dis. 2014;73(6):1107–1113. doi:10.1136/annrheumdis-2012-203075
  • Pakshir P, Noskovicova N, Lodyga M, et al. The myofibroblast at a glance. J Cell Sci. 2020;133(13). doi:10.1242/jcs.227900
  • Zhang Y, Hongfei X, Hu X, Zhang C, Chu T, Zhou Y. Histopathological changes in supraspinous ligaments, ligamentum flava and paraspinal muscle tissues of patients with ankylosing spondylitis. Int J Rheum Dis. 2016;19(4):420–429. doi:10.1111/1756-185X.12305
  • Murshed M. Mechanism of Bone Mineralization. Cold Spring Harb Perspect Med. 2018;8(12):a031229. doi:10.1101/cshperspect.a031229
  • Beyer C, Distler JHW. Changing paradigms in spondylarthritis: the myofibroblast signature. Arthritis Rheum. 2013;65(1):24–27. doi:10.1002/art.37703
  • Nanthakumar CB, Hatley RJD, Lemma S, Gauldie J, Marshall RP, Macdonald SJF. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat Rev Drug Discov. 2015;14(10):693–720. doi:10.1038/nrd4592
  • Stougaard J, Lomholt S, Ommen P, Kelsen J, Kragstrup TW. The antifibrotic drug pirfenidone inhibits spondyloarthritis fibroblast-like synoviocytes and osteoblasts in vitro. BMC Rheumatol. 2018;2:33.
  • Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–192. doi:10.1038/nm.3074
  • Tang SL, Huang QH, Wu LG, Liu C, Cai AL. MiR-124 regulates osteoblast differentiation through GSK-3β in ankylosing spondylitis. Eur Rev Med Pharmacol Sci. 2018;22(20):6616–6624. doi:10.26355/eurrev_201810_16136
  • Zou Y-C, Yang X-W, Yuan S-G, Zhang P, Yi-Kai L. Celastrol inhibits prostaglandin E2-induced proliferation and osteogenic differentiation of fibroblasts isolated from ankylosing spondylitis Hip tissues in vitro. Drug Design Dev Ther. 2016;10:933–948. doi:10.2147/DDDT.S97463
  • Du W, Yin L, Tong P. MiR-495 targeting dvl-2 represses the inflammatory response of ankylosing spondylitis. Am J Transl Res. 2019;11(5):2742–2753.
  • Patel MS, Karsenty G. Regulation of bone formation and vision by LRP5. New Eng J Med. 2002;346(20):1572–1574. doi:10.1056/NEJM200205163462011
  • Zou Y-C, Yang X-W, Yuan S-G, Zhang P, Yong-Liang Y, Yi-Kai L. Downregulation of dickkopf-1 enhances the proliferation and osteogenic potential of fibroblasts isolated from ankylosing spondylitis patients via the Wnt/β-catenin signaling pathway in vitro. Connect Tissue Res. 2016;57(3):200–211. doi:10.3109/03008207.2015.1127916
  • Di G, Kong L, Zhao Q, Ding T. MicroRNA-146a knockdown suppresses the progression of ankylosing spondylitis by targeting dickkopf 1. Biomed Pharmacother. 2018;97:1243–1249. doi:10.1016/j.biopha.2017.11.067
  • Resende GG, Machado CRL, Rocha MA, et al. IL-22 increases the production of sFRP3 by FLS in inflammatory joint diseases. Braz J Med Biol. 2020;53(9):e9880. doi:10.1590/1414-431x20209880
  • Xindong H, Dong Y. Ankylosis progressive homolog upregulation inhibits cell viability and mineralization during fibroblast ossification by regulating the Wnt/β‑catenin signaling pathway. Mol Med Rep. 2020;22(6):4551–4560. doi:10.3892/mmr.2020.11576
  • Feng X, Zhu S, Yan Z, Wang C, Tong W, Weidong X. PDGFRB as a potential therapeutic target of ankylosing spondylitis: validation following bioinformatics analysis. Cell Mol Biol. 2020;66(6):127–134. doi:10.14715/cmb/2020.66.6.23
  • Chongru H, Dahe L, Gao J, Jia L, Liu Z, Weidong X. Inhibition of CXCR4 inhibits the proliferation and osteogenic potential of fibroblasts from ankylosing spondylitis via the Wnt/β‑catenin pathway. Mol Med Rep. 2019;19(4):3237–3246. doi:10.3892/mmr.2019.9980
  • Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science. 2002;296(5573):1646–1647. doi:10.1126/science.1071809
  • Lories RJU, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest. 2005;115(6):1571–1579. doi:10.1172/JCI23738
  • Thatcher JD. The TGF-beta signal transduction pathway. Sci Signal. 2010;3(119):tr4. doi:10.1126/scisignal.3119tr4
  • Nishimura R, Hata K, Harris SE, Ikeda F, Yoneda T. Core-binding factor alpha 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5. Bone. 2002;31(2):303–312. doi:10.1016/S8756-3282(02)00826-8
  • Zhang Y, Chen W-G, Yang S-Z, et al. Up-regulation of TβRIII facilitates the osteogenesis of supraspinous ligament-derived fibroblasts from patients with ankylosing spondylitis. J Cell Mol Med. 2021;25(3):1613–1623. doi:10.1111/jcmm.16262
  • Jia C, Liu H, Min L, Zhikui W, Feng X. Effects of icariin on cytokine-induced ankylosing spondylitis with fibroblastic osteogenesis and its molecular mechanism. Int J Clin Exp Pathol. 2014;7(12):9104–9109.
  • Zhou Y-Y, Liu H-X, Jiang N, et al. Elemene, the essential oil of Curcuma wenyujin, inhibits osteogenic differentiation in ankylosing spondylitis. Joint Bone Spine. 2015;82(2):100–103. doi:10.1016/j.jbspin.2014.05.004
  • Zhou Y-Y, Huang R-Y, Lin J-H, Xu -Y-Y, He X-H, He Y-T. Bushen-Qiangdu-Zhilv decoction inhibits osteogenic differentiation of rat fibroblasts by regulating connexin 43. Exp Ther Med. 2016;12(1):347–353. doi:10.3892/etm.2016.3292
  • Liu H-X, Jiang N, Liang H-Y, et al. Bushen Qiangji Granule medicated serum inhibits osteogenic differentiation of fibroblasts in ankylosing spondylitis by inhibiting the BMP/Smads signal pathway in vitro. Chin J Integr Med. 2016;22(11):817–822. doi:10.1007/s11655-016-2268-9
  • Wang G, Cai J, Zhang J, Cuiyun L. Mechanism of triptolide in treating ankylosing spondylitis through the anti‑ossification effect of the BMP/Smad signaling pathway. Mol Med Rep. 2018;17(2):2731–2737. doi:10.3892/mmr.2017.8117
  • Yuan B, Zhiming W. MMP-2 silencing reduces the osteogenic transformation of fibroblasts by inhibiting the activation of the BMP/Smad pathway in ankylosing spondylitis. Oncol Letters. 2018;15(3):3281–3286. doi:10.3892/ol.2017.7714
  • Ding L, Yin Y, Hou Y, et al. microRNA-214-3p suppresses ankylosing spondylitis fibroblast osteogenesis BMP-TGF axis and BMP2. Front Endocrinol. 2020;11:609753. doi:10.3389/fendo.2020.609753
  • Liu KG, He QH, Tan JW, Liao GJ. Expression of TNF-α, VEGF, and MMP-3 mRNAs in synovial tissues and their roles in fibroblast-mediated osteogenesis in ankylosing spondylitis. Gene Mole Res. 2015;14(2):6852–6858. doi:10.4238/2015.June.18.28
  • Kirkbride KC, Townsend TA, Bruinsma MW, Barnett JV, Blobe GC. Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor. J Biol Chem. 2008;283(12):7628–7637. doi:10.1074/jbc.M704883200
  • Hashida Y, Nakahama K-I, Shimizu K, Akiyama M, Harada K, Morita I. Communication-dependent mineralization of osteoblasts via gap junctions. Bone. 2014;61:19–26. doi:10.1016/j.bone.2013.12.031
  • Yang H-S, Xu-hua L, Chen D-Y, et al. Upregulated expression of connexin43 in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament. Spine. 2011;36(26):2267–2274. doi:10.1097/BRS.0b013e31820ccfc6
  • Qin X, Jiang T, Liu S, et al. Effect of metformin on ossification and inflammation of fibroblasts in ankylosing spondylitis: an in vitro study. J Cell Biochem. 2018;119(1):1074–1082. doi:10.1002/jcb.26275
  • Chen S, van Tok MN, Knaup VL, et al. mTOR blockade by rapamycin in spondyloarthritis: impact on inflammation and new bone formation and. Front Immunol. 2019;10:2344. doi:10.3389/fimmu.2019.02344
  • Li DH, He CR, Liu F-P, et al. Annexin A2, up-regulated by IL-6, promotes the ossification of ligament fibroblasts from ankylosing spondylitis patients. Biomed Pharmacother. 2016;84:674–679. doi:10.1016/j.biopha.2016.09.091
  • Assadiasl S, Rajabinejad M, Soleimanifar N, et al. MicroRNAs-mediated regulation pathways in rheumatic diseases. Inflammopharmacology. 2023;31(1):129–144. doi:10.1007/s10787-022-01097-6
  • Najm A, Blanchard F, Le Goff B. Micro-RNAs in inflammatory arthritis: from physiopathology to diagnosis, prognosis and therapeutic opportunities. Biochem Pharmacol. 2019;165:134–144. doi:10.1016/j.bcp.2019.02.031
  • Fangcang Y, Cui Y, Zhou X, Zhang X, Han J. Osteogenic differentiation of human ligament fibroblasts induced by conditioned medium of osteoclast-like cells. Biosci Trends. 2011;5(2):46–51. doi:10.5582/bst.2011.v5.2.46
  • Zhang C, Wang C, Jia Z. Differentially expressed mRNAs, lncRNAs, and miRNAs with associated co-expression and ceRNA networks in ankylosing spondylitis. Oncotarget. 2017;8(69):113543–113557. doi:10.18632/oncotarget.22708
  • Zou Y-C, Yan L-M, Gao Y-P, et al. miR-21 may act as a potential mediator between inflammation and abnormal bone formation in ankylosing spondylitis based on TNF-α concentration-dependent manner through the JAK2/STAT3 pathway. Dose-Response. 2020;18(1):1559325819901239. doi:10.1177/1559325819901239
  • Guangxue G, Huo Y, Gang X, et al. MicroRNA-204-GSDMD interaction regulates pyroptosis of fibroblast-like synoviocytes in ankylosing spondylitis. Int Immunopharmacol. 2021;91:107227. doi:10.1016/j.intimp.2020.107227
  • Xia L, Zhou W, Zhen L, Guan F. Hsa_circ_0056558 regulates cyclin-dependent kinase 6 by sponging microRNA-1290 to suppress the proliferation and differentiation in ankylosing spondylitis. Autoimmunity. 2021;54(2):114–128. doi:10.1080/08916934.2021.1894417
  • Yu C, Zhan X, Liang T, et al. Mechanism of hip arthropathy in ankylosing spondylitis: abnormal myeloperoxidase and phagosome. Front Immunol. 2021;12:572592. doi:10.3389/fimmu.2021.572592
  • van Tok MN, van Duivenvoorde LM, Kramer I, et al. Interleukin-17A inhibition diminishes inflammation and new bone formation in experimental spondyloarthritis. Arthritis Rheumatol. 2019;71(4):612–625. doi:10.1002/art.40770
  • Gracey E, Burssens A, Cambré I, et al. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol. 2020;16(4):193–207. doi:10.1038/s41584-019-0364-x
  • Zihao L, Chen S, Cui H, et al. Tenascin-C-mediated suppression of extracellular matrix adhesion force promotes entheseal new bone formation through activation of Hippo signalling in ankylosing spondylitis. Ann Rheum Dis. 2021;80(7):891–902. doi:10.1136/annrheumdis-2021-220002
  • Van Mechelen M, Lories R. Tenascin-C, a novel target to inhibit new bone formation in axial spondyloarthritis, linked with inflammation, mechanical strain and tissue damage. Ann Rheum Dis. 2021;80(7):823–824. doi:10.1136/annrheumdis-2021-220443