43
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

FPR1, as a Potential Biomarker of Diagnosis and Infliximab Therapy Responses for Crohn’s Disease, is Related to Disease Activity, Inflammation and Macrophage Polarization

, ORCID Icon, &
Pages 3949-3966 | Received 16 Jan 2024, Accepted 12 Jun 2024, Published online: 19 Jun 2024

References

  • Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet. 2017;389(10080):1741–1755. doi:10.1016/S0140-6736(16)31711-1
  • Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380(9853):1590–1605. doi:10.1016/S0140-6736(12)60026-9
  • Roda G, Chien Ng S, Kotze PG, et al. Crohn’s disease. Nat Rev Dis Primers. 2020;6(1):22. doi:10.1038/s41572-020-0156-2
  • Ng SC, Tang W, Ching JY, et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn’s and colitis epidemiology study. Gastroenterology. 2013;145(1):158–165 e152. doi:10.1053/j.gastro.2013.04.007
  • Bernstein CN. Treatment of IBD: where we are and where we are going. Am J Gastroenterol. 2015;110(1):114–126. doi:10.1038/ajg.2014.357
  • Kong L, Pokatayev V, Lefkovith A, et al. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity. 2023;56(2):444–458 e445. doi:10.1016/j.immuni.2023.01.002
  • Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16(9):531–543. doi:10.1038/s41575-019-0172-4
  • Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2023;20(8):538–553. doi:10.1038/s41575-023-00769-0
  • Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 2018;19(6):1801. doi:10.3390/ijms19061801
  • Murray PJ. Macrophage Polarization. Annu Rev Physiol. 2017;79(1):541–566. doi:10.1146/annurev-physiol-022516-034339
  • Liu X, Ren X, Zhou L, et al. Tollip orchestrates macrophage polarization to alleviate intestinal mucosal inflammation. J Crohn's Colitis. 2022;16(7):1151–1167. doi:10.1093/ecco-jcc/jjac019
  • Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol. 2021;18(3):579–587. doi:10.1038/s41423-020-00541-3
  • Cheng Y, Li J, Wang L, et al. Eriocalyxin B ameliorated Crohn’s disease-like colitis by restricting M1 macrophage polarization through JAK2/STAT1 signalling. Eur J Pharmacol. 2023;954:175876. doi:10.1016/j.ejphar.2023.175876
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Shen W, Song Z, Zhong X, et al. Sangerbox: a comprehensive, interaction‐friendly clinical bioinformatics analysis platform. Imeta. 2022;1(3):e36. doi:10.1002/imt2.36
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9:559. doi:10.1186/1471-2105-9-559
  • Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–457. doi:10.1038/nmeth.3337
  • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22. doi:10.18637/jss.v033.i01
  • Sanz H, Valim C, Vegas E, Oller JM, Reverter F. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinf. 2018;19(1):432. doi:10.1186/s12859-018-2451-4
  • Chen T, Guestrin C XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; San Francisco, California, USA; 2016.
  • Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics. 2012;99(6):323–329. doi:10.1016/j.ygeno.2012.04.003
  • Liu Z, Liu L, Weng S, et al. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat Commun. 2022;13(1):816. doi:10.1038/s41467-022-28421-6
  • Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi:10.1089/omi.2011.0118
  • Walter W, Sanchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912–2914. doi:10.1093/bioinformatics/btv300
  • Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf. 2013;14(1):7. doi:10.1186/1471-2105-14-7
  • Ye C, Zhu S, Yuan J. Construction of ceRNA network to reveal potential biomarkers in Crohn’s disease and validation in a TNBS induced mice model. J Inflamm Res. 2021;14:6447–6459. doi:10.2147/JIR.S338053
  • Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol. 2008;14:14 11 11–14 11 14.
  • Kammerer U, Kapp M, Gassel AM, et al. A new rapid immunohistochemical staining technique using the EnVision antibody complex. J Histochem Cytochem. 2001;49(5):623–630. doi:10.1177/002215540104900509
  • Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–477. doi:10.1038/s41573-019-0024-5
  • Wu H, Zeng R, Qiu X, et al. Investigating regulatory patterns of NLRP3 Inflammasome features and association with immune microenvironment in Crohn’s disease. Front Immunol. 2022;13:1096587. doi:10.3389/fimmu.2022.1096587
  • Dai Z, Zhang J, Xu W, Du P, Wang Z, Liu Y. Single-cell sequencing-based validation of T cell-associated diagnostic model genes and drug response in Crohn’s disease. Int J Mol Sci. 2023;24(7):6054. doi:10.3390/ijms24076054
  • Chen X, Gao Y, Xie J, et al. Identification of FCN1 as a novel macrophage infiltration-associated biomarker for diagnosis of pediatric inflammatory bowel diseases. J Transl Med. 2023;21(1):203. doi:10.1186/s12967-023-04038-1
  • Zhang X, Chen T, Qian X, He X, V E S. Bioinformatics analysis of immune cell infiltration and diagnostic biomarkers between ankylosing spondylitis and inflammatory bowel disease. Comput Math Methods Med. 2023;2023:9065561. doi:10.1155/2023/9065561
  • Ye C, Huang Y, Gao Y, Zhu S, Yuan J. Exploring the glycolytic cross-talk genes between inflammatory bowel disease and colorectal cancer. Funct Integr Genomics. 2023;23(3):230. doi:10.1007/s10142-023-01170-5
  • Huang R, Wang W, Chen Z, et al. Identifying immune cell infiltration and effective diagnostic biomarkers in Crohn’s disease by bioinformatics analysis. Front Immunol. 2023;14:1162473. doi:10.3389/fimmu.2023.1162473
  • Adegbola SO, Sahnan K, Warusavitarne J, Hart A, Tozer P. Anti-TNF Therapy in Crohn’s Disease. Int J Mol Sci. 2018;19(8):2244. doi:10.3390/ijms19082244
  • Ye C, Zhu S, Yuan J. Characterization of two TNF-related subtypes predicting infliximab therapy responses in Crohn’s disease. Front Immunol. 2022;13:871312. doi:10.3389/fimmu.2022.871312
  • Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404. doi:10.1038/nri3671
  • Wang K, Mao T, Lu X, et al. A potential therapeutic approach for ulcerative colitis: targeted regulation of macrophage polarization through phytochemicals. Front Immunol. 2023;14:1155077. doi:10.3389/fimmu.2023.1155077
  • Zhang K, Guo J, Yan W, Xu L. Macrophage polarization in inflammatory bowel disease. Cell Commun Signal. 2023;21(1):367. doi:10.1186/s12964-023-01386-9
  • Dharmasiri S, Garrido-Martin EM, Harris RJ, et al. Human intestinal macrophages are involved in the pathology of both ulcerative colitis and Crohn disease. Inflamm Bowel Dis. 2021;27(10):1641–1652. doi:10.1093/ibd/izab029
  • Yang S, Zhao M, Jia S. Macrophage: key player in the pathogenesis of autoimmune diseases. Front Immunol. 2023;14:1080310. doi:10.3389/fimmu.2023.1080310
  • Jin L, Li L, Hu C, et al. Integrative analysis of transcriptomic and proteomic profiling in inflammatory bowel disease colon biopsies. Inflamm Bowel Dis. 2019;25(12):1906–1918. doi:10.1093/ibd/izz111
  • Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23(1):40–55. doi:10.1038/s41580-021-00407-0
  • Richens JG, Lee CM, Johri S. Improving the accuracy of medical diagnosis with causal machine learning. Nat Commun. 2020;11(1):3923. doi:10.1038/s41467-020-17419-7
  • Mahendran N, Durai Raj Vincent PM, Srinivasan K, Chang CY. Machine learning based computational gene selection models: a survey, performance evaluation, open issues, and future research directions. Front Genet. 2020;11:603808. doi:10.3389/fgene.2020.603808
  • He X, Ye H, Zhao R, et al. Advanced machine learning model for predicting Crohn’s disease with enhanced ant colony optimization. Comput Biol Med. 2023;163:107216. doi:10.1016/j.compbiomed.2023.107216
  • Daperno M, D’Haens G, Van Assche G, et al. Development and validation of a new, simplified endoscopic activity score for Crohn’s disease: the SES-CD. Gastrointest Endosc. 2004;60(4):505–512. doi:10.1016/S0016-5107(04)01878-4
  • Best WR. Predicting the Crohn’s disease activity index from the Harvey-Bradshaw index. Inflamm Bowel Dis. 2006;12(4):304–310. doi:10.1097/01.MIB.0000215091.77492.2a
  • Chen K, Bao Z, Gong W, Tang P, Yoshimura T, Wang JM. Regulation of inflammation by members of the formyl-peptide receptor family. J Autoimmun. 2017;85:64–77. doi:10.1016/j.jaut.2017.06.012
  • Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329–342. doi:10.1038/nri3661
  • Jeong YS, Bae YS. Formyl peptide receptors in the mucosal immune system. Exp Mol Med. 2020;52(10):1694–1704. doi:10.1038/s12276-020-00518-2
  • Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG. The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. Am J Pathol. 2015;185(5):1172–1184. doi:10.1016/j.ajpath.2015.01.020
  • Li Z, Li Y, Han J, et al. Formyl peptide receptor 1 signaling potentiates inflammatory brain injury. Sci Transl Med. 2021;13(605). doi:10.1126/scitranslmed.abe9890
  • Kuley R, Stultz RD, Duvvuri B, et al. N-formyl methionine peptide-mediated neutrophil activation in systemic sclerosis. Front Immunol. 2021;12:785275. doi:10.3389/fimmu.2021.785275
  • Pasternak BA, D’Mello S, Jurickova II, et al. Lipopolysaccharide exposure is linked to activation of the acute phase response and growth failure in pediatric Crohn’s disease and murine colitis. Inflamm Bowel Dis. 2010;16(5):856–869. doi:10.1002/ibd.21132
  • Wollam J, Riopel M, Xu YJ, et al. Microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance. Diabetes. 2019;68(7):1415–1426. doi:10.2337/db18-1307
  • Di Paola R, Fusco R, Gugliandolo E, et al. Formyl peptide receptor 1 signalling promotes experimental colitis in mice. Pharmacol Res. 2019;141:591–601. doi:10.1016/j.phrs.2019.01.041
  • The National Academic press. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): The National Academic press; 2011.