405
Views
15
CrossRef citations to date
0
Altmetric
Review

Reflections on Atherosclerosis: Lesson from the Past and Future Research Directions

ORCID Icon, ORCID Icon & ORCID Icon
Pages 621-633 | Published online: 17 Jul 2020

References

  • Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association [published correction appears in Circulation. Circulation. 2019;139(10):e56–e528. doi:10.1161/CIR.0000000000000659
  • Murphy WA Jr, Zur Nedden D, Gostner P, Knapp R, Recheis W, Seidler H. The Iceman: discovery and imaging. Radiology. 2003;226(3):614–629.
  • Czermak J. Description and microscopic findings of two Egyptian mummies. Meet Acad Sci. 1852;9:27–69.
  • Smith GE. 61079: the mummy of Menephtah. In: Smith GE, editor. The Royal Mummies. Cairo, Egypt: Imprimerie de l’Institut Francais d’Archeologic Orientale; 1912:65–70.
  • Shattock SG. A report upon the pathological condition of the Aorta of King Menephtah, traditionally regarded as the Pharaoh of the Exodus. Proc R Soc Med. 1909;2(PatholSect):122–127.
  • Sandison AT. Sir Marc Armand Ruffer (1859-1917) pioneer of palaeopathology. Med Hist. 1967;11(2):150‐156. doi:10.1017/s002572730001200x
  • Ruffer MA. Remarks on the histology and pathological anatomy of Egyptian mummies. Cairo Sci J. 1910;4:40.
  • Ruffer MA. On arterial lesions found in Egyptian mummies (1580 B.C.—525 A.D.). J Pathol Bacteriol. 1911;16:453–462. doi:10.1002/path.1700150403
  • Long AR Cardiovascular renal disease: a report of a case three thousand years ago. Arch Pathol (Chic) 1931; 12:92–94
  • Allam AH, Thompson RC, Wann LS, et al. Atherosclerosis in ancient Egyptian mummies: the Horus study. JACC Cardio-Vasc Imaging. 2011;4(4):315–327.
  • Thompson RC, Allam AH, Lombardi GP, et al. Atherosclerosis across 4000 years of human history: the Horus study of four ancient populations. Lancet. 2013;381(9873):1211–1222. doi:10.1016/S0140-6736(13)60598-X
  • Allam AH, Mandour Ali MA, Wann LS, et al. Atherosclerosis in ancient and modern Egyptians: the Horus study. Glob Heart. 2014;9(2):197–202. doi:10.1016/j.gheart.2014.03.2454
  • Thompson RC, Allam AH, Zink AR, et al. Computed tomographic evidence of atherosclerosis in the mummified remains of humans from around the world. Glob Heart. 2014;9(2):187–196. doi:10.1016/j.gheart.2014.03.2455
  • David AR, Kershaw A, Heagerty A. Atherosclerosis and diet in ancient Egypt. The Lancet. 2010;375(9716):718–719. doi:10.1016/S0140-6736(10)60294-2
  • Minelli P, Montinari MR. The mediterranean diet and cardioprotection: historical overview and current research. J Multidiscip Healthc. 2019;12:805–815. doi:10.2147/JMDH.S219875
  • Thomas GS, Wann LS, Allam AH, et al. Why did ancient people have atherosclerosis? From autopsies to computed tomography to potential causes. Glob Heart. 2014;9(2):229–237. doi:10.1016/j.gheart.2014.04.002
  • Rocha e Silva M. A brief survey of the history of inflammation. Agents Actions. 1978;8(1–2):45–49. doi:10.1007/bf01972401
  • Rather LJ. Disturbance of function (functio laesa): the legendary fifth cardinal sign of inflammation, added by Galen to the four cardinal signs of Celsus. Bull N Y Acad Med. 1971;47(3):303–322.
  • Davies MK, Eollman A. Leonardo da Vinci (1452–1519). Heart. 1996;76(6):464. doi:10.1136/hrt.76.6.464
  • Leibowitz J. The History of Coronary Disease. London: Wellcome Institute of the History of Medicine; 1970:107.
  • André E Jean-Frédéric Lobstein: “Artériosclérose” et “ostéoporose”, Historie des Sciences Medicales - Tome LII - N° 2, 197-208, 2018.
  • Mönckeberg JG, Die Reine Ü. Mediaverkalkung der Extremitätenarterien und ihr Verhalten zur Arteriosklerose. Virchows Arch Path Anat. 1903;171:141–167. doi:10.1007/BF01926946
  • Marchand F. Ueber Atherosclerosis. Vol. 21. Kongresse: Verhandlungen der Kongresse fuer Innere Medizin; 1904.
  • Virchow R. Cellular Pathology. London, United Kingdom: John Churchill; 1858.
  • Rokitansky K, Day EG, Moore HC, Sieveking EH, Swaine EW. A Manual of Pathological Anatomy. Philadelphia: Blanchard & Lea; 1855:201–205.
  • Virchow R. Phlogose und Thrombose im Gefasssystem. Gesammelte Abhandlungen zur Wissenschaftlichen Medicin. Frankfurt: Meidinger Sohn and Co.; 1856:p 458.
  • Virchow R. Der Ateromatose Prozess der Arterien. Wien Med Wochenschr. 1856:825–827.
  • Duguid JB. Pathogenesis of arteriosclerosis. Lancet. 1949;2:925–927. doi:10.1016/S0140-6736(49)91503-2
  • French JE. Atherosclerosis in relation to the structure and function of the arterial intima, with special reference to the endothelium. Int Rev Exp Pathol. 1966;5:253–353.
  • Mustard JF, Packham MA. The role of blood and platelets in atherosclerosis and the complications of atherosclerosis. Thromb Diath Haemor. 1975;33:444–456. doi:10.1055/s-0038-1647838
  • Wissler RW. Development of the atherosclerosis plaque. In: Braunwald E, editor. The Myocardium: Failure and Infarction. New York: H.P. Publishing Co; 1974:155–166.
  • Thomas WA, Jones R, Scott RF, Morrison E, Goodale F, Imai H. Production of early atherosclerotic lesions in rats characterized by proliferation of “modified smooth muscle cells. Exp Mol Pathol. 1963;2(suppl 1):40–61. doi:10.1016/0014-4800(63)90005-4
  • Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973;180(4093):1332–1339. doi:10.1126/science.180.4093.1332
  • Ross R. Rous-Whipple Award Lecture. Am J Pathol. 1993;143(4):987–1002.
  • Ross R. Atherosclerosis-an inflammatory disease. Atherosclerosis: a defense mechanism gone awry. N Engl J Med. 1999;340(2):115–126. doi:10.1056/NEJM199901143400207
  • Windaus A. Ueber der Gehalt normaler und ateromatoser Aorten an Colesterolo und colesterinester. Zeitschrift Physiol Chemie. 1910;67:174. doi:10.1515/bchm2.1910.67.2.174
  • Anichkov NN. Experimental arteriosclerosis in animals. In: Cowdry EV, editor. Arteriosclerosis: A Survey of the Problem. New York: MacMillan Publishing; 1933:271–322.
  • Anichkov NN. A history of experimentation on arterial atherosclerosis in animals. In: Blumenthal HT, editor. Cowdry’s Arteriosclerosis: A Survey of the Problem. 2nd ed. Springfield, (IL): Charles C Thomas Publishing; 1967:21–46.
  • Dock W. Research in arteriosclerosis; the first fifty years. Ann Intern Med. 1958;49:699–707. doi:10.7326/0003-4819-49-3-699
  • Goldstein JL, Brown MS. Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proc Natl Acad Sci U S A. 1973;70(10):2804–2808. doi:10.1073/pnas.70.10.2804
  • Endo A, Kuroda M, Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976;72(2):323–326. doi:10.1016/0014-5793(76)80996-9
  • Brown MS, Faust JR, Goldstein JL, Kaneko I, Endo A. Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem. 1978;253(4):1121–1128.
  • Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–156. doi:10.1038/ng1161
  • Rosenson RS, Hegele RA, Fazio S, Cannon CP. The evolving future of PCSK9 inhibitors. J Am Coll Cardiol. 2018;72(3):314–329. doi:10.1016/j.jacc.2018.04.054
  • Libby P. Vascular biology of atherosclerosis: overview and state of the art. Am J Cardiol. 2003;91(3A):3A–6A. doi:10.1016/s0002-9149(02)03143-0
  • Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–1695. doi:10.1056/NEJMra043430
  • Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–874. doi:10.1038/nature01323
  • Gimbrone MAJr, Topper JN, Nagel T, Anderson KR, Garcia-Cardeña G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann NY Acad Sci. 2000;902:230–240. doi:10.1111/j.1749-6632.2000.tb06318.x
  • Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23Suppl 1):III27–III32. doi:10.1161/01.CIR.0000131515.03336.f8
  • Fruchart JC, Nierman MC, Stroes ES, Kastelein JJ, Duriez P. New risk factors for atherosclerosis and patient risk assessment. Circulation. 2004;109(23Suppl 1):III15–III19. doi:10.1161/01.CIR.0000131513.33892.5b
  • Libby P, Hansson GK. From focal lipid storage to systemic inflammation: JACC review topic of the week. J Am Coll Cardiol. 2019;74(12):1594–1607. doi:10.1016/j.jacc.2019.07.061
  • Libby P, Hansson GK. Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res. 2015;116:307–311. doi:10.1161/CIRCRESAHA.116.301313
  • Ketelhuth DFJ, Lutgens E, Bäck M, et al. Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovasc Res. 2019;115(9):1385–1392. doi:10.1093/cvr/cvz166
  • Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12:204–212. doi:10.1038/ni.2001
  • Zhao TX, Mallat Z. Targeting the immune system in atherosclerosis: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(13):1691–1706. doi:10.1016/j.jacc.2018.12.083
  • Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev. 2015;24:29–39. doi:10.1016/j.arr.2015.01.003
  • Sellge G, Kufer TA. PRR-signaling pathways: learning from microbial tactics. Semin Immunol. 2015;27:75–84. doi:10.1016/j.smim.2015.03.009
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805‐820. doi:10.1016/j.cell.2010.01.022
  • Lin J, Kakkar V, Lu X. Essential roles of toll-like receptors in atherosclerosis. Curr Med Chem. 2016;23(5):431‐454. doi:10.2174/0929867323666151207111408
  • Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209(1):13–22. doi:10.1083/jcb.201412052
  • Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56. doi:10.1038/s41572-019-0106-z
  • Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–636. doi:10.1161/CIRCRESAHA.115.306301
  • Libby P, DiCarli M, Weissleder R. The vascular biology of atherosclerosis and imaging targets. J Nucl Med. 2010;51(Suppl 1):33S–37S. doi:10.2967/jnumed.109.069633
  • Hua J, Malinski T. Variable effects of LDL subclasses of cholesterol on endothelial nitric oxide/peroxynitrite balance - the risks and clinical implications for cardiovascular disease. Int J Nanomedicine. 2019;14:8973–8987. doi:10.2147/IJN.S223524
  • Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27(11):2292–2301. doi:10.1161/ATVBAHA.107.149179
  • Habas K, Shang L. Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell. 2018;54:139–143. doi:10.1016/j.tice.2018.09.002
  • Libby P, Ridker PM, Hansson GK. Leducq transatlantic network on atherothrombosis. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54:2129–2138. doi:10.1016/j.jacc.2009.09.009
  • Ramji DP, Davies TS. Cytokines in atherosclerosis: key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev. 2015;26(6):673–685. doi:10.1016/j.cytogfr.2015.04.003
  • Trus E, Basta S, Gee K. Who’s in charge here? Macrophage colony stimulating factor and granulocyte macrophage colony stimulating factor: competing factors in macrophage polarization. Cytokine. 2020;127:154939. doi:10.1016/j.cyto.2019.154939
  • Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol. 2010;7(2):77–86. doi:10.1038/nrcardio.2009.228
  • Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–744. doi:10.1038/s41569-019-0227-9
  • Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans [published correction appears in Immunity. Immunity. 2013;38(6):1092–1104. doi:10.1016/j.immuni.2013.06.009
  • Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13:709–721. doi:10.1038/nri3520
  • Abdolmaleki F, Gheibi Hayat SM, Bianconi V, Johnston TP, Sahebkar A. Atherosclerosis and immunity: a perspective. Trends Cardiovasc Med. 2019;29(6):363–371. doi:10.1016/j.tcm.2018.09.017
  • Swirski FK, Robbins CS, Nahrendorf M. Development and function of arterial and cardiac macrophages. Trends Immunol. 2016;37(1):32–40. doi:10.1016/j.it.2015.11.004
  • Ammirati E, Moroni F, Magnoni M, Camici PG. The Role of T and B cells in human atherosclerosis and atherothrombosis. Clin Exp Immunol. 2015;179:173–187. doi:10.1111/cei.12477
  • Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–175. doi:10.1038/nri3399
  • Silvestre-Roig C, Braster Q, Ortega-Gomez A, et al. Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol. 2020. doi:10.1038/s41569-019-0326-7
  • Ilatovskaya DV, Halade GV, DeLeon-Pennell KY. Adaptive immunity-driven inflammation and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2019;317(6):H1254–H1257. doi:10.1152/ajpheart.00642.2019
  • Ketelhuth DF, Hansson GK. Adaptive response of T and B cells in atherosclerosis. Circ Res. 2016;118(4):668–678. doi:10.1161/CIRCRESAHA.115.306427
  • Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis. Immunity. 2017;47(4):621–634. doi:10.1016/j.immuni.2017.09.008
  • Bartlett B, Ludewick HP, Misra A, Lee S, Dwivedi G. Macrophages and T cells in atherosclerosis: a translational perspective. Am J Physiol Heart Circ Physiol. 2019;317(2):H375–H386. doi:10.1152/ajpheart.00206.2019
  • Ou HX, Guo BB, Liu Q, et al. Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol Sin. 2018;39(8):1249–1258. doi:10.1038/aps.2017.140
  • Srikakulapu P, McNamara CA. B cells and atherosclerosis. Am J Physiol Heart Circ Physiol. 2017;312(5):H1060–H1067. doi:10.1152/ajpheart.00859.2016
  • Sage AP, Tsiantoulas D, Binder CJ, Mallat Z. The role of B cells in atherosclerosis. Nat Rev Cardiol. 2019;16(3):180–196. doi:10.1038/s41569-018-0106-9
  • Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991‐1045. doi:10.1146/annurev.iy.12.040194.005015
  • Liu D, Zeng X, Li X, Mehta JL, Wang X. Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Res Cardiol. 2018;113:5. doi:10.1007/s00395-017-0663-9
  • Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. doi:10.3390/ijms20133328
  • Jiang X, Wang F, Wang Y, et al. Inflammasome-Driven Interleukin-1α and Interleukin-1β production in atherosclerotic plaques relates to hyperlipidemia and plaque complexity. JACC Basic Transl Sci. 2019;4(3):304–317. doi:10.1016/j.jacbts.2019.02.007
  • Satish M, Agrawal DK. Atherothrombosis and the NLRP3 inflammasome - endogenous mechanisms of inhibition. Transl Res. 2020;215:75–85. doi:10.1016/j.trsl.2019.08.003
  • Kaplan H, Thompson RC, Trumble BC, et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet. 2017;389(10080):1730–1739. doi:10.1016/S0140-6736(17)30752-3
  • Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162(4):597–605. doi:10.1016/j.ahj.2011.06.012
  • Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–1131. doi:10.1056/NEJMoa1707914
  • Ridker PM, MacFadyen JG, Everett BM, et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391(10118):319–328. doi:10.1016/S0140-6736(17)32814-3
  • Abderrazak A, Couchie D, Mahmood DF, et al. Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation. 2015;131(12):1061–1070. doi:10.1161/CIRCULATIONAHA.114.013730
  • Nidorf SM, Fiolet ATL, Eikelboom JW, et al. The effect of low-dose colchicine in patients with stable coronary artery disease: the LoDoCo2 trial rationale, design, and baseline characteristics. Am Heart J. 2019;218:46–56. doi:10.1016/j.ahj.2019.09.011
  • Wu LM, Wu SG, Chen F, et al. Atorvastatin inhibits pyroptosis through the lncRNA NEXN-AS1/NEXN pathway in human vascular endothelial cells. Atherosclerosis. 2020;293:26–34. doi:10.1016/j.atherosclerosis.2019.11.033
  • Ridker PM, Everett BM, Pradhan A, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380(8):752–762. doi:10.1056/NEJMoa1809798
  • Ridker PM. Anticytokine agents: targeting interleukin signaling pathways for the treatment of atherothrombosis. Circ Res. 2019;124(3):437–450. doi:10.1161/CIRCRESAHA.118.313129
  • Fernandez DM, Rahman AH, Fernandez NF, et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019;25(10):1576‐1588. doi:10.1038/s41591-019-0590-4
  • Winkels H, Ehinger E, Vassallo M, et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res. 2018;122(12):1675‐1688. doi:10.1161/CIRCRESAHA.117.312513
  • Willemsen L, de Winther MP. Macrophage subsets in atherosclerosis as defined by single-cell technologies. J Pathol. 2020;250(5):705‐714. doi:10.1002/path.5392
  • Roy P, Ali AJ, Kobiyama K, Ghosheh Y, Ley K. Opportunities for an atherosclerosis vaccine: from mice to humans [published online ahead of print, 2020 Jan 18]. Vaccine. 2020;S0264-410X(19):31681. doi:10.1016/j.vaccine.2019.12.039
  • Kobiyama K, Saigusa R, Ley K. Vaccination against atherosclerosis. Curr Opin Immunol. 2019;59:15–24. doi:10.1016/j.coi.2019.02.008
  • Wikimedia Commons [webpage on the Internet]. Germany: Rudolf Virchow; 1902. Available from: https://commons.wikimedia.org/wiki/File:Rudolf_Virchow_(Carl_G%C3%BCnther).png. Accessed July 01, 2020..
  • Wikimedia Commons [webpage on the Internet]. Germany: Carl vo Rokitanskay Litho; 1853. Available from: https://commons.wikimedia.org/wiki/File:Carl_von_Rokitansky_Litho.jpg. Accessed July 01, 2020.