165
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Effect of Gait Training Program with Mechanical Exoskeleton on Body Composition of Paraplegics

, , &
Pages 1879-1886 | Published online: 03 Dec 2020

References

  • Sedlock DA, Laventure SJ. Body composition and resting energy expenditure in long term spinal cord injury. Paraplegia. 1990;28(7):448–454. doi:10.1038/sc.1990.60
  • Gorgey AS, Caudill C, Sistrun S, et al. Frequency of dietary recalls, nutritional assessment, and body composition assessment in men with chronic spinal cord injury. Arch Phys Med Rehabil. 2015;96(9):1646–1653. doi:10.1016/j.apmr.2015.05.013
  • Gorgey AS, Gater DR. Prevalence of obesity after spinal cord injury. Top Spinal Cord Inj Rehabil. 2007;12(4):1–7. doi:10.1310/sci1204-1
  • Rajan S, McNeely MJ, Warms C, Goldstein B. Clinical assessment and management of obesity in individuals with spinal cord injury: a review. J Spinal Cord Med. 2008;31(4):361–372. doi:10.1080/10790268.2008.11760738
  • Garshick E, Kelley A, Cohen SA, et al. A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord. 2005;43(7):408–416. doi:10.1038/sj.sc.3101729
  • Gater DR. Obesity after spinal cord injury. Phys Med Rehabil Clin N Am. 2007;18(2):333–51, vii. doi:10.1016/j.pmr.2007.03.004
  • de Groot PC, Hjeltnes N, Heijboer AC, Stal W, Birkeland K. Effect of training intensity on physical capacity, lipid profile and insulin sensitivity in early rehabilitation of spinal cord injured individuals. Spinal Cord. 2003;41(12):673–679. doi:10.1038/sj.sc.3101534
  • Bizzarini E, Saccavini M, Lipanje F, Magrin P, Malisan C, Zampa A. Exercise prescription in subjects with spinal cord injuries. Arch Phys Med Rehabil. 2005;86(6):1170–1175. doi:10.1016/j.apmr.2004.11.014
  • de Groot S, Kouwijzer I, Baauw M, Broeksteeg R, Valent LJ. Effect of self-guided training for the HandbikeBattle on body composition in people with spinal cord injury. Spinal Cord Series Cases. 2018;4:79. doi:10.1038/s41394-018-0103-6
  • Wheeler GD, Andrews B, Lederer R, et al. Functional electric stimulation-assisted rowing: increasing cardiovascular fitness through functional electric stimulation rowing training in persons with spinal cord injury. Arch Phys Med Rehabil. 2002;83(8):1093–1099. doi:10.1053/apmr.2002.33656
  • Park MO, Lee SH. Effects of seating education and cushion management for adaptive sitting posture in spinal cord injury: two case reports. Medicine. 2019;98(4):e14231. doi:10.1097/md.0000000000014231
  • Karimi MT. Evidence-based evaluation of physiological effects of standing and walking in individuals with spinal cord injury. Iran J Med Sci. 2011;36(4):242–253.
  • Asselin P, Knezevic S, Kornfeld S, et al. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev. 2015;52(2):147–158. doi:10.1682/jrrd.2014.02.0060
  • Evans N, Hartigan C, Kandilakis C, Pharo E, Clesson I. Acute cardiorespiratory and metabolic responses during exoskeleton-assisted walking overground among persons with chronic spinal cord injury. Top Spinal Cord Inj Rehabil. 2015;21(2):122–132. doi:10.1310/sci2102-122
  • Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Medical Devices (Auckland, NZ). 2016;9:455–466. doi:10.2147/mder.S103102
  • Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen AM. Assessment of in-hospital walking velocity and level of assistance in a powered exoskeleton in persons with spinal cord injury. Top Spinal Cord Inj Rehabil. 2015;21(2):100–109. doi:10.1310/sci2102-100
  • Ohta Y, Yano H, Suzuki R, Yoshida M, Kawashima N, Nakazawa K. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients. Proc Inst Mech Eng H. 2007;221(6):629–639. doi:10.1243/09544119jeim55
  • Tanabe S, Saitoh E, Hirano S, et al. Design of the Wearable Power-Assist Locomotor (WPAL) for paraplegic gait reconstruction. Disabil Rehabil Assist Technol. 2013;8(1):84–91. doi:10.3109/17483107.2012.688238
  • Karimi MT. Functional walking ability of paraplegic patients: comparison of functional electrical stimulation versus mechanical orthoses. Eur J Orthop Surg Traumatol. 2013;23(6):631–638. doi:10.1007/s00590-012-1049-1
  • Buchholz AC, McGillivray CF, Pencharz PB. The use of bioelectric impedance analysis to measure fluid compartments in subjects with chronic paraplegia. Arch Phys Med Rehabil. 2003;84(6):854–861. doi:10.1016/s0003-9993(02)04950-x
  • Cirnigliaro CM, La Fountaine MF, Emmons R, et al. Prediction of limb lean tissue mass from bioimpedance spectroscopy in persons with chronic spinal cord injury. J Spinal Cord Med. 2013;36(5):443–453. doi:10.1179/2045772313y.0000000108
  • Vik LC, Lannem AM, Rak BM, Stensrud T. Health status of regularly physically active persons with spinal cord injury. Spinal Cord Series Cases. 2017;3:17099. doi:10.1038/s41394-017-0033-8
  • Karelis AD, Carvalho LP, Castillo MJ, Gagnon DH, Aubertin-Leheudre M. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J Rehabil Med. 2017;49(1):84–87. doi:10.2340/16501977-2173
  • Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–1434. doi:10.1249/mss.0b013e3180616b27
  • Arazpour M, Soleimani F, Sajedi F, et al. Effect of orthotic gait training with isocentric reciprocating gait orthosis on walking in children with myelomeningocele. Top Spinal Cord Inj Rehabil. 2017;23(2):147–154. doi:10.1310/sci2302-147
  • Organ LW, Bradham GB, Gore DT, Lozier SL. Segmental bioelectrical impedance analysis: theory and application of a new technique. J Appl Physiol (Bethesda, Md: 1985). 1994;77(1):98–112. doi:10.1152/jappl.1994.77.1.98
  • Hussain S, Jamwal PK, Ghayesh MH, Xie SQ. Assist-as-needed control of an intrinsically compliant robotic gait training orthosis. IEEE Trans Ind Electron. 2017;64(2):1675–1685. doi:10.1109/TIE.2016.2580123
  • Hussain S, Xie SQ, Jamwal PK, Parsons J. An intrinsically compliant robotic orthosis for treadmill training. Med Eng Phys. 2012;34(10):1448–1453. doi:10.1016/j.medengphy.2012.02.003
  • Giangregorio LM, Hicks AL, Webber CE, et al. Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord. 2005;43(11):649–657. doi:10.1038/sj.sc.3101774
  • Giangregorio LM, Webber CE, Phillips SM, et al. Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Appl Physiol Nutr Metab. 2006;31(3):283–291. doi:10.1139/h05-036
  • Chisholm AE, Alamro RA, Williams AMM, Lam T. Overground vs. treadmill-based robotic gait training to improve seated balance in people with motor-complete spinal cord injury: a case report. J Neuroeng Rehabil. 2017;14(1):27. doi:10.1186/s12984-017-0236-z
  • Kocina P. Body composition of spinal cord injured adults. Sports Med (Auckland, NZ). 1997;23(1):48–60. doi:10.2165/00007256-199723010-00005
  • Mekki M, Delgado AD, Fry A, Putrino D, Huang V. Robotic rehabilitation and spinal cord injury: a narrative review. Neurotherapeutics. 2018;15(3):604–617. doi:10.1007/s13311-018-0642-3
  • Gorgey AS. Robotic exoskeletons: the current pros and cons. World J Orthop. 2018;9(9):112–119. doi:10.5312/wjo.v9.i9.112
  • Gorgey AS, Sumrell R, Goetz LL. 44 - exoskeletal assisted rehabilitation after spinal cord injury. In: Webster JB, Murphy DP, editors. Atlas of Orthoses and Assistive Devices. Fifth ed. Elsevier; 2019:440–447.e2.