144
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Occupational and Patient Radiation Dose and Quality Implications of Femoral Access Imaging During Coronary Angiography

ORCID Icon, , , , &
Pages 1807-1818 | Published online: 12 Jul 2021

References

  • Hernández C, Durán A, Cortés MC. Lesiones oculares y radiación ionizante. Revista Colombiana de Cardiología. 2020;27:72–78. doi:10.1016/j.rccar.2019.09.004
  • Ison GR, Allahwala U, Weaver JC. Radiation Management in Coronary Angiography: Percutaneous Coronary Intervention for Chronic Total Occlusion at the Frontier. Heart Lung Circ. 2019;28(10):1501–1509. doi:10.1016/j.hlc.2019.05.004
  • Boice JD, Held KD, Shore RE. Radiation epidemiology and health effects following low-level radiation exposure. J Radiol Prot. 2019;39(4):S14–S27.
  • Klein LW, Tra Y, Garratt KN, et al. Occupational health hazards of interventional cardiologists in the current decade: Results of the 2014 SCAI membership survey. Catheter Cardiovasc Interv. 2015;86(5):913–924. doi:10.1002/ccd.25927
  • Roguin A. Radiation Hazards to Interventional Cardiologists: A Report on Increased Brain Tumors Among Physicians Working in the Cath Lab. SOLACI. Buenos Aires: Argentina; 2014.
  • Aristizábal JM. Riesgo cardiovascular relacionado con la radiación ionizante. Revista Colombiana de Cardiología. 2020;27:21–24. doi:10.1016/j.rccar.2019.11.001
  • Borghini A, Vecoli C, Piccaluga E, Guagliumi G, Picano E, Andreassi MG. Increased mitochondrial DNA4977-bp deletion in catheterization laboratory workers with long-term low-dose exposure to ionizing radiation. Eur J Prev Cardiol. 2019;26(9):976–984. doi:10.1177/2047487319831495
  • Coppeta L, Pietroiusti A, Neri A, et al. Risk of radiation-induced lens opacities among surgeons and interventional medical staff. Radiol Phys Technol. 2019;12(1):26–29. doi:10.1007/s12194-018-0487-9
  • Castle E, Rathod K, Guttmann O, et al. Routine use of fluoroscopic guidance and up-front femoral angiography results in reduced femoral complications in patients undergoing coronary angiographic procedures: an observational study using an Interrupted Time-Series analysis. Heart Vessels. 2019;34(3):419–426. doi:10.1007/s00380-018-1266-6
  • Chhatriwalla AK, Lim M, Sorajja P. Arterial and venous access. In: Sorajja P, Lim M, Kern M, editors. Kern’s Cardiac Catheterization Handbook. 2020:79–130.
  • Kern MJ, Seto AH, Forsberg M. Vascular Access. In: Kern M, Sorajja P, Lim M, editors. The Interventional Cardiac Catheterization Handbook. Philadelphia, PA, U.S.A: Elsevier; 2018:51–87.
  • Moscucci M. Grossman & Baim’s Cardiac Catheterization, Angiography, and Intervention. Philadelphia: Wolters Kluwer; 2015.
  • Schueler BA, Fetterly KA, Balter S. Radiation Safety During Cardiovascular Procedures. In: Topol E, Teirstein P, editors. Textbook of Interventional Cardiology. 8 ed. Philadelphia, PA, U.S.A: Elsevier; 2020:128–138.e122.
  • Tarighatnia A, Mohammadalian A, Ghojazade M, Pourafkari L, Farajollahi A. Beam projections and radiation exposure in transradial and transfemoral approaches during coronary angiography. Anatol J Cardiol. 2017;18(4):298–303. doi:10.14744/AnatolJCardiol.2017.7724
  • Pearl MS, Torok C, Wang J, Wyse E, Mahesh M, Gailloud P. Practical techniques for reducing radiation exposure during cerebral angiography procedures. J Neurointerv Surg. 2015;7(2):141. doi:10.1136/neurintsurg-2013-010982
  • Geber T, Gunnarsson M, Mattsson S. Eye lens dosimetry for interventional procedures – Relation between the absorbed dose to the lens and dose at measurement positions. Radiat Meas. 2011;46(11):1248–1251. doi:10.1016/j.radmeas.2011.07.028
  • Walsh C, Dowling A, Meade A, Malone J. Subjective and objective measures of image quality in digital fluoroscopy. Radia Prot Dosimetry. 2005;117(1–3):34–37. doi:10.1093/rpd/nci708
  • Zurcher KS, Naidu SG, Money SR, et al. Dose Reduction Using Digital Fluoroscopy Versus Digital Subtraction Angiography in EVAR: A Prospective Randomized Trial. J Vasc Surg. 2020;72(6):1938–1945. doi:10.1016/j.jvs.2020.02.050
  • Minici R, Paone S, Talarico M, et al. Percutaneous treatment of vascular access-site complications: a ten years’ experience in two centres. CVIR Endovascular. 2020;3(1):29. doi:10.1186/s42155-020-00120-7
  • Rane N, Imam A, Foley P, Timmons G, Uberoi R. Pelvic digital subtraction catheter angiography—Are routine oblique projections necessary? Eur J Radiol. 2011;77(1):182–184. doi:10.1016/j.ejrad.2009.07.008
  • López PO, Dauer LT, Loose R, et al. ICRP Publication 139: Occupational Radiological Protection in Interventional Procedures. Annals of the ICRP. 2018;47(2):1–118. doi:10.1177/0146645317750356
  • Kim J-S, Lee B-K, Ryu D-R, et al. Occupational radiation exposure in femoral artery approach is higher than radial artery approach during coronary angiography or percutaneous coronary intervention. Sci Rep. 2020;10(1):7104. doi:10.1038/s41598-020-62794-2
  • Wilson-Stewart K, Hartel G, Fontanarosa D. Occupational radiation exposure to the head is higher for scrub nurses than cardiologists during cardiac angiography. J Adv Nurs. 2019;75(11):2692–2700. doi:10.1111/jan.14085
  • Abuzeid W, Abunassar J, Leis JA, et al. Radiation safety in the cardiac catheterization lab: A time series quality improvement initiative. Cardiovasc Revasc Med. 2017;18(5,Supplement 1):S22–S26. doi:10.1016/j.carrev.2017.04.009
  • Pancholy SB, Joshi P, Shah S, Rao SV, Bertrand OF, Patel TM. Effect of Vascular Access Site Choice on Radiation Exposure During Coronary Angiography: The REVERE Trial (Randomized Evaluation of Vascular Entry Site and Radiation Exposure). JACC Cardiovasc Interv. 2015;8(9):1189–1196. doi:10.1016/j.jcin.2015.03.026
  • Rychlik J, Hornacek I, Tejc M, Petrikovits E, Klimsa Z. Retrospective analysis of coronary interventions in a single centre and comparison of specific differences between radial and femoral access. Acta Cardiol. 2019;74(4):325–330. doi:10.1080/00015385.2018.1494115
  • Üreyen ÇM, Coşansu K, Vural MG, et al. Is trans-radial approach related to an increased risk of radiation exposure in patients who underwent diagnostic coronary angiography or percutaneous coronary intervention? (The SAKARYA study). Anatolian j Cardiol. 2019;22(1):5–12. doi:10.14744/AnatolJCardiol.2019.06013
  • Georges J-L, Belle L, Meunier L, et al. Radial versus femoral access for coronary angiography and intervention is associated with lower patient radiation exposure in high-radial-volume centres: insights from the RAY’ACT-1 study. Arch Cardiovasc Dis. 2017;110(3):179–187. doi:10.1016/j.acvd.2016.09.002
  • Reynolds, A. Obesity and Medical Imaging Challenges. Radiol Technol. 2011;82(3):219–239.
  • Leyton F, Nogueira MS, Gubolino LA, Pivetta MR, Ubeda C. Correlation between scatter radiation dose at height of operator’s eye and dose to patient for different angiographic projections. Appl Radiat Isot. 2016;117:100–105. doi:10.1016/j.apradiso.2016.01.013
  • Taddeucci A, Piffer S, Redapi L. European Commission publication RP-162 as a strong reference for reducing patient radiation dose: Results from an angiography equipment updating. Phys Med. 2020;71:132–136. doi:10.1016/j.ejmp.2020.02.019