375
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Evaluation of Pediatric Imaging Modalities Practices of Radiologists and Technologists: A Survey-Based Study

ORCID Icon, , , , , ORCID Icon & show all
Pages 443-453 | Published online: 05 Mar 2022

References

  • Bernier M-O, Baysson H, Pearce MS, et al. Cohort profile: the EPI-CT study: a European pooled epidemiological study to quantify the risk of radiation-induced cancer from paediatric CT. Int J Epidemiol. 2019;48:379–381g. doi:10.1093/ije/dyy231
  • Nagel HD. CT parameters that influence the radiation dose. In: Radiation Dose from Adult and Pediatric Multidetector Computed Tomography. Springer. 2007:51–79.
  • Kostova-Lefterova D, Vassileva J. Survey of practice in paediatric computed tomography. Radiat Prot Dosimetry. 2011;147:156–159. doi:10.1093/rpd/ncr327
  • Bernier M, Rehel J, Brisse H, et al. Radiation exposure from CT in early childhood: a French large-scale multicentre study. Br J Radiol. 2012;85:53–60. doi:10.1259/bjr/90758403
  • Alkhorayef M. Survey of paediatric imaging exposure from computed tomography examinations. Radiation Phys Chem. 2020;167:108261. doi:10.1016/j.radphyschem.2019.04.011
  • ACR-AAPM. Practice parameter for diagnostic reference levels and achievable doses in Medical X-ray imaging. Am Coll Radiol Reston. 2014;1:74.
  • Brenner DJ, Elliston CD, Hall EJ, et al. Estimated risks of radiation-induced fatal cancer from pediatric CT. Am j Roentgenol. 2001;176:289–296. doi:10.2214/ajr.176.2.1760289
  • Huda W, Mettler FA. Volume CT dose index and dose-length product displayed during CT: what good are they? Radiology. 2011;258:236–242. doi:10.1148/radiol.10100297
  • Kharbanda AB, Krause E, Lu Y, et al. Analysis of radiation dose to pediatric patients during computed tomography examinations. Acad Emerg Med. 2015;22(6):670–675. doi:10.1111/acem.12689
  • Alkhorayef M, Hamza Y, Sulieman A, et al. Effective dose and radiation risk estimation in certain paediatric renal imaging procedures. Radiation Phys Chem. 2019;154:64–68. doi:10.1016/j.radphyschem.2018.06.016
  • Sulieman A, Mahmoud M, Serhan O, et al. CT examination effective doses in Saudi Arabia. Appl Radiat Isot. 2018;141:261–265. doi:10.1016/j.apradiso.2018.07.011
  • International Atomic Energy Agency. Radiation Protection in Paediatric Radiology. Vienna: International Atomic Energy Agency; 2013.
  • ACR ACoR. Available from: https://www.acr.org/Clinical-Resources/ACR-Appropriateness-Criteria. Accessed February 23, 2022.
  • Rehani M. Radiation Protection in Paediatric Radiology. International Atomic Energy Agency; 2012.
  • Krishnan P, Raybaud C, Palasamudram S, et al. Neuroimaging in pediatric hydrocephalus. Indian J Pediatrics. 2019;2:1–9.
  • Gibbs WN, Tanenbaum LN. Imaging of hydrocephalus. Appl Radiol. 2018;47:5–13.
  • Park DB, Hill JG, Thacker PG, et al. The role of limited head computed tomography in the evaluation of pediatric ventriculoperitoneal shunt malfunction. Pediatr Emerg Care. 2016;32:585–589. doi:10.1097/PEC.0000000000000760
  • Trost MJ, Robison N, Coffey D, et al. Changing trends in brain imaging technique for pediatric patients with ventriculoperitoneal shunts. Pediatr Neurosurg. 2018;53:116–120. doi:10.1159/000485923
  • Sarma A, Poussaint TY. Indications and Imaging Modality of Choice in Pediatric Headache. Neuroimaging Clinics. 2019;29:271–289. doi:10.1016/j.nic.2019.01.007
  • Goske MJ, Applegate KE, Boylan J, et al. The Image Gently campaign: working together to change practice. Am J Roentgenol. 2008;190:273–274. doi:10.2214/AJR.07.3526
  • Scheinfeld MH, Moon J-Y, Fagan MJ, et al. MRI usage in a pediatric emergency department: an analysis of usage and usage trends over 5 years. Pediatr Radiol. 2017;47:327–332. doi:10.1007/s00247-016-3764-y
  • Patel SK, Yuan W, Mangano FT. Advanced neuroimaging techniques in pediatric hydrocephalus. Pediatr Neurosurg. 2017;52:436–445. doi:10.1159/000454717
  • Boyko N, Eppinger MA, Straka-DeMarco D, et al. Imaging of congenital torticollis in infants: a retrospective study of an institutional protocol. J Neurosurg Pediatr. 2017;20:191–195. doi:10.3171/2017.3.PEDS16277
  • King S, Thomson A. Radiological perspectives in empyema: childhood respiratory infections. Br Med Bull. 2002;61:203–214. doi:10.1093/bmb/61.1.203
  • Calder A, Owens CM. Imaging of parapneumonic pleural effusions and empyema in children. Pediatr Radiol. 2009;39:527–537. doi:10.1007/s00247-008-1133-1
  • Murphy AJ, Axt JR, Crapp SJ, et al. Concordance of imaging modalities and cost minimization in the diagnosis of pediatric choledochal cysts. Pediatr Surg Int. 2012;28:615–621. doi:10.1007/s00383-012-3089-3
  • Saito T, Terui K, Mitsunaga T, et al. Significance of imaging modalities for preoperative evaluation of the pancreaticobiliary system in surgery for pediatric choledochal cyst. J Hepato-Biliary-Pancreatic Sci. 2016;23:347–352. doi:10.1002/jhbp.347
  • Napolitano M, Franchi-Abella S, Damasio MB, et al. Practical approach to imaging diagnosis of biliary atresia, Part 1: prenatal ultrasound and magnetic resonance imaging, and postnatal ultrasound. Pediatr Radiol. 2021;51:314–331. doi:10.1007/s00247-020-04840-9
  • Kolar M, Pilkington M, Winthrop A, et al. Diagnosis and treatment of childhood intussusception from 1997 to 2016: a population-based study. J Pediatr Surg. 2020;55:1562–1569. doi:10.1016/j.jpedsurg.2020.01.049
  • Otero HJ, White AM, Khwaja AB, et al. Imaging intussusception in children’s hospitals in the United States: trends, outcomes, and costs. J Am Coll Radiol. 2019;16:1636–1644. doi:10.1016/j.jacr.2019.04.011
  • Binkovitz LA, Kolbe AB, Orth RC, et al. Pediatric ileocolic intussusception: new observations and unexpected implications. Pediatr Radiol. 2019;49:76–81. doi:10.1007/s00247-018-4259-9
  • Chew R, Ditchfield M, Paul E, et al. Comparison of safety and efficacy of image‐guided enema reduction techniques for paediatric intussusception: a review of the literature. J Med Imaging Radiat Oncol. 2017;61:711–717. doi:10.1111/1754-9485.12601
  • Mandeville K, Chien M, Willyerd FA, et al. Intussusception: clinical presentations and imaging characteristics. Pediatr Emerg Care. 2012;28:842–844. doi:10.1097/PEC.0b013e318267a75e
  • Crane GL, Hernanz-Schulman M. Current imaging assessment of congenital abdominal masses in pediatric patients. Semin Roentgenol. 2012;32–44. doi:10.1053/j.ro.2011.07.004
  • Hanafy AK, Mujtaba B, Roman-Colon AM, et al. Imaging features of adrenal gland masses in the pediatric population. Abdominal Radiol. 2019;44:1–18. doi:10.1007/s00261-018-1673-2
  • Jones RE, Gee KM, Preston SC, et al. Diagnostic utilization and accuracy of pediatric appendicitis imaging at adult and pediatric centers. J Surg Res. 2019;240:97–103. doi:10.1016/j.jss.2019.02.047
  • Orman G, Bosemani T, Tekes A, et al. Scout view in pediatric CT neuroradiological evaluation: do not underestimate! Childs Nerv Syst. 2014;30(2):307–311. doi:10.1007/s00381-013-2288-0
  • Sener RN, Ripeckyj G, Otto P, et al. Recognition of abnormalities on computed scout images in CT examinations of the head and spine. Neuroradiology. 1993;35:229–231. doi:10.1007/BF00588503
  • Sivaganesan A, Krishnamurthy R, Sahni D, et al. Neuroimaging of ventriculoperitoneal shunt complications in children. Pediatr Radiol. 2012;42:1029–1046. doi:10.1007/s00247-012-2410-6
  • Brook OR, Guralnik L, Engel A. CT scout view as an essential part of CT reading. Australas Radiol. 2007;51:211–217. doi:10.1111/j.1440-1673.2007.01715.x
  • Gottumukkala RV, Kalra MK, Tabari A, et al. Advanced CT Techniques for Decreasing Radiation Dose, Reducing Sedation Requirements, and Optimizing Image Quality in Children. Radiographics. 2019;39(3):709–726. doi:10.1148/rg.2019180082
  • Slovis TL. Sedation and anesthesia issues in pediatric imaging. Pediatr Radiol. 2011;41:514–516. doi:10.1007/s00247-011-2115-2
  • Wilder RT, Flick RP, Sprung J, et al. Early Exposure to Anesthesia and Learning Disabilities in a Population-based Birth Cohort. Anesthesiology. 2009;110:796–804. doi:10.1097/01.anes.0000344728.34332.5d
  • Rappaport BA, Suresh S, Hertz S, et al. Anesthetic Neurotoxicity — clinical Implications of Animal Models. N Engl J Med. 2015;372:796–797. doi:10.1056/NEJMp1414786
  • Mukundan JS, Wang PI, Frush DP, et al. MOSFET dosimetry for radiation dose assessment of bismuth shielding of the eye in children. Am j Roentgenol. 2007;188:1648–1650. doi:10.2214/AJR.06.1146
  • Coursey C, Frush DP, Yoshizumi T, et al. Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding. Am J Roentgenol. 2008;190(1):W54–W61. doi:10.2214/AJR.07.2017
  • Fricke BL, Donnelly LF, Frush DP, et al. In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data. Am J Roentgenol. 2003;180:407–411. doi:10.2214/ajr.180.2.1800407
  • Hohl C, Wildberger J, Süß C, et al. Radiation dose reduction to breast and thyroid during MDCT: effectiveness of an in-plane bismuth shield. Acta Radiol. 2006;47:562–567. doi:10.1080/02841850600702150
  • Samei E. Pros and cons of organ shielding for CT imaging. Pediatr Radiol. 2014;44:495–500. doi:10.1007/s00247-014-3084-z