462
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Review on Nanomaterials and Nano-Scaled Systems for Topical and Systemic Delivery of Antifungal Drugs

&
Pages 1819-1840 | Received 03 Feb 2022, Accepted 15 Aug 2022, Published online: 27 Aug 2022

References

  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51. doi:10.1016/j.addr.2015.09.012
  • Garg A, Sharma GS, Goyal AK, Ghosh G, Si SC, Rath G. Recent advances in topical carriers of anti-fungal agents. Heliyon. 2020;6(8):e04663. doi:10.1016/j.heliyon.2020.e04663
  • Faisal W, Soliman GM, Hamdan AM, Faisal W, Soliman GM, Hamdan AM. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J Liposome Res. 2018;28(1):14–21. doi:10.1080/08982104.2016.1239636
  • Bitar D, Lortholary O, Strat Le Y, et al. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis J. 2014;20(7):1149–1155.
  • Soliman GM. Nanoparticles as safe and effective delivery systems of antifungal agents: achievements and challenges. Int J Pharm. 2017;523(1):15–32. doi:10.1016/j.ijpharm.2017.03.019
  • Brunke S, Mogavero S, Kasper L, Hube B. Virulence factors in fungal pathogens of man. Curr Opin Microbiol. 2016;32:89–95. doi:10.1016/j.mib.2016.05.010
  • Ikeh M, Ahmed Y, Quinn J. Phosphate acquisition and virulence in human fungal pathogens. Microorganism. 2017;5(3):1–17. doi:10.3390/microorganisms5030048
  • Ding C, Festa RA, Sun TS. Iron and copper as virulence modulators in human fungal pathogens. Mol Microbiol. 2014;93(1):10–23. doi:10.1111/mmi.12653
  • Nett JE, Andes DR. Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin North Am. 2016;30(1):51–83. doi:10.1016/j.idc.2015.10.012
  • Walsh TJ, Groll A, Hiemenz J, Fleming R, Roilides E, Anaissie E. Infections due to emerging and uncommon medically important fungal pathogens. Clin Microbiol Infect. 2004;10(SUPPL. 1):48–66. doi:10.1111/j.1470-9465.2004.00839.x
  • Kumar JR, Muralidharan S, Parasuraman S. Antifungal agents: new approach for novel delivery systems. J Pharm Sci Res. 2014;6(5):229–235.
  • Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc. 2011;86(8):805–817. doi:10.4065/mcp.2011.0247
  • Macesic N, Stone NRH, Wingard JR. Liposomal amphotericin B. In: Kucers’ the Use of Antibiotics a Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs. 7th ed. 2017; Vol. 69, 2612–2627.
  • Furst T, Piette M, Lechanteur A, Evrard B, Piel G. Mucoadhesive cellulosic derivative sponges as drug delivery system for vaginal application. Eur J Pharm Biopharm. 2015;95(February):128–135. doi:10.1016/j.ejpb.2015.01.019
  • Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016;224:86–102. doi:10.1016/j.jconrel.2016.01.008
  • Khatry S, Sirish Shastri N, Sadanandam M. Novel drug delivery systems for antifungal therapy. Int J Pharm Pharm Sci. 2010;2(4):6–9.
  • Waghule T, Sankar S, Rapalli VK, et al. Emerging role of nanocarriers based topical delivery of anti-fungal agents in combating growing fungal infections. Dermatol Ther. 2020;33(6). doi:10.1111/dth.13905.
  • Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–999. doi:10.2147/IJN.S68861
  • Saadat E, Dinarvand R, Ebrahimnejad P. Encapsulation of nystatin in nanoliposomal formulation: characterization, stability study and antifungal activity against Candida albicans. Pharm Biomed Res. 2016;2(1):44–54. doi:10.18869/acadpub.pbr.2.1.44
  • Adler-Moore JP, Gangneux JP, Pappas PG. Comparison between liposomal formulations of amphotericin B. Med Mycol. 2016;54(3):223–231. doi:10.1093/mmy/myv111
  • Stone NRH, Bicanic T, Salim R, Hope W. Liposomal Amphotericin B (AmBisome®): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485–500. doi:10.1007/s40265-016-0538-7
  • Zoubek A, Emminger W, Schmidmeier WE, et al. Conventional vs. liposomal amphotericin B in immunosuppressed children. Pediatr Hematol Oncol. 2009;3:18.
  • Akhtar N. Vesicles: a recently developed novel carrier for enhanced topical drug delivery. Curr Drug Deliv. 2014;11(1):87–97. doi:10.2174/15672018113106660064
  • Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J Liposome Res. 2014;24(2):163–169. doi:10.3109/08982104.2013.871025
  • Salem HF, Ahmed SM, Omar MM. Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular delivery. Drug Des Devel Ther. 2016;10:277–295. doi:10.2147/DDDT.S91730
  • Gupta SK, Velpandian T, Dhingra N, Jaiswal J. Intravitreal pharmacokinetics of plain and liposome-entrapped fluconazole in rabbit eyes. J Ocul Pharmacol Ther. 2000;16(6):511–518. doi:10.1089/jop.2000.16.511
  • Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces. 2012;92:299–304. doi:10.1016/j.colsurfb.2011.12.004
  • Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized Guinea pig model of microsporum canis - Dermatophytosis. Int J Pharm. 2012;437(1–2):277–287. doi:10.1016/j.ijpharm.2012.08.015
  • Mahima M, Devi VK. Potential of novel drug delivery systems in the management of topical candidiasis. J Drug Target. 2017. doi:10.1080/1061186X.2017.1331352
  • Campani V, Biondi M, Mayol L, et al. Nanocarriers to enhance the accumulation of vitamin K1 into the skin. Pharm Res. 2016;33(4):893–908. doi:10.1007/s11095-015-1836-6
  • Verma P, Pathak K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomed Nanotechnol Biol Med. 2012;8(4):489–496. doi:10.1016/j.nano.2011.07.004
  • Patel DM, Jani RH, Patel CN. Ufasomes: a vesicular drug delivery. Syst Rev Pharm. 2011;2(2):72–78. doi:10.4103/0975-8453.86290
  • Gupta M, Vaidya B, Mishra N, Vyas SP. Effect of surfactants on the characteristics of fluconazole niosomes for enhanced cutaneous delivery. Artif Cells Blood Substitutes Biotechnol. 2011;39(6):376–384. doi:10.3109/10731199.2011.611476
  • Barakat HS, Darwish IA, El-Khordagui LK, Khalafallah NM. Development of naftifine hydrochloride alcohol-free niosome gel. Drug Dev Ind Pharm. 2009;35(5):631–637. doi:10.1080/03639040802498864
  • Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185(1):22–36. doi:10.1016/j.jconrel.2014.04.015
  • Abdul Hasan Sathali A, Rajalakshmi G. Evaluation of transdermal targeted niosomal drug delivery of terbinafine hydrochloride. Int J PharmTech Res. 2010;2(3):2081–2089.
  • Shirsand S, Kanani K, Keerthy D, Nagendrakumar D, Para M. Formulation and evaluation of Ketoconazole niosomal gel drug delivery system. Int J Pharm Investig. 2012;2(4):201. doi:10.4103/2230-973X.107002
  • Alam M, Dwivedi V, Khan AA, Mohammad O. Efficacy of niosomal formulation of diallyl sulfide against experimental candidiasis in Swiss albino mice. Nanomedicine. 2009;4(7):713–724. doi:10.2217/nnm.09.60
  • Chaudhari MB, Desai PP, Patel PA, Patravale VB. Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv Transl Res. 2016;6(4):354–364. doi:10.1007/s13346-015-0267-6
  • Sanna V, Gavini E, Cossu M, Rassu G, Giunchedi P. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: in-vitro characterization, ex-vivo and in-vivo studies. J Pharm Pharmacol. 2007;59(8):1057–1064. doi:10.1211/jpp.59.8.0002
  • Moazeni M, Kelidari HR, Saeedi M, et al. Time to overcome fluconazole resistant Candida isolates: solid lipid nanoparticles as a novel antifungal drug delivery system. Colloids Surf B Biointerfaces. 2016;142:400–407. doi:10.1016/j.colsurfb.2016.03.013
  • Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng C. 2016;68:982–994. doi:10.1016/j.msec.2016.05.119
  • Khan AB, Saha C. A review on vaginal drug delivery system. Rajiv Gandhi Univ Heal Sci J Pharm Sci. 2015;4(4):142–147.
  • Pardeike J, Weber S, Zarfl HP, Pagitz M, Zimmer A. Itraconazole-loaded nanostructured lipid carriers (NLC) for pulmonary treatment of aspergillosis in falcons. Eur J Pharm Biopharm. 2016;108:269–276. doi:10.1016/j.ejpb.2016.07.018
  • Song SH, Lee KM, Kang JB, Lee SG, Kang MJ, Choi YW. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem Pharm Bull. 2014;62(8):793–798. doi:10.1248/cpb.c14-00202
  • Hussain A, Singh VK, Singh OP, Shafaat K, Kumar S, Ahmad FJ. Formulation and optimization of nanoemulsion using antifungal lipid and surfactant for accentuated topical delivery of Amphotericin B. Drug Deliv. 2016;23(8):3101–3110. doi:10.3109/10717544.2016.1153747
  • Aswathanarayan JB, Vittal RR. Nanoemulsions and their potential applications in food industry. Front Sustain Food Syst. 2019;3:(November):1–21. doi:10.3389/fsufs.2019.00095
  • Hussain A, Samad A, Singh SK, et al. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv. 2016;23(2):652–667. doi:10.3109/10717544.2014.933284
  • Mahtab A, Anwar M, Mallick N, Naz Z, Jain GK, Ahmad FJ. Transungual delivery of Ketoconazole Nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech. 2016;17(6):1477–1490. doi:10.1208/s12249-016-0488-0
  • Hussain A, Singh S, Webster TJ, Ahmad FJ. New perspectives in the topical delivery of optimized amphotericin B loaded nanoemulsions using excipients with innate anti-fungal activities: a mechanistic and histopathological investigation. Nanomed Nanotechnol Biol Med. 2017;13(3):1117–1126. doi:10.1016/j.nano.2016.12.002
  • Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular nanomedicine towards cancer . J Pharm Sci. 2012;101(7):2271–2280. doi:10.1002/jps.23146
  • Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int J Pharm. 2013;443(1–2):293–305. doi:10.1016/j.ijpharm.2012.12.049
  • Mirza MA, Ahmad S, Mallick MN, Manzoor N, Talegaonkar S, Iqbal Z. Development of a novel synergistic thermosensitive gel for vaginal candidiasis: an in vitro, in vivo evaluation. Colloids Surf B Biointerfaces. 2013;103:275–282. doi:10.1016/j.colsurfb.2012.10.038
  • Thakkar HP, Khunt A, Dhande RD, Patel AA. Formulation and evaluation of Itraconazole nanoemulsion for enhanced oral bioavailability. J Microencapsul. 2015;32(6):559–569. doi:10.3109/02652048.2015.1065917
  • Kakkar S, Kaur IP. Spanlastics-A novel nanovesicular carrier system for ocular delivery. Int J Pharm. 2011;413(1–2):202–210. doi:10.1016/j.ijpharm.2011.04.027
  • Kaur IP, Rana C, Singh M, Bhushan S, Singh H, Kakkar S. Development and evaluation of novel surfactant-based elastic vesicular system for ocular delivery of fluconazole. J Ocul Pharmacol Ther. 2012;28(5):484–496. doi:10.1089/jop.2011.0176
  • ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 2016;23(7):2115–2123. doi:10.3109/10717544.2014.942811
  • ElSherif MS, Brown C, Mackinnon-Cameron D, et al. Assessing the safety and immunogenicity of recombinant vesicular stomatitis virus Ebola vaccine in healthy adults: a randomized clinical trial. CMAJ. 2017;189(24):E819–E827. doi:10.1503/cmaj.170074
  • Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2018;114:41–45. doi:10.1016/j.micpath.2017.11.013
  • Patel NR, Leonardi C, Sabliov CM. Itraconazole-loaded poly (lactic-co-glycolic) acid nanoparticles for improved antifungal activity. Nanomedicine. 2010;5(7):1037–1050. doi:10.2217/nnm.10.68
  • Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–142. doi:10.1016/j.ijpharm.2009.10.018
  • Pourgholi F, Hajivalili M, Farhad JN, Kafil HS, Yousefi M. Nanoparticles: novel vehicles in treatment of Glioblastoma. Biomed Pharmacother. 2016;77:98–107. doi:10.1016/j.biopha.2015.12.014
  • Campos EVR, Oliveira JL, Zavala-Betancourt SA, et al. Development of stained polymeric nanocapsules loaded with model drugs: use of a fluorescent poly(phenyleneethynylene). Colloids Surf B Biointerfaces. 2016;147:442–449. doi:10.1016/j.colsurfb.2016.08.031
  • Matoso Sombra F, Richter AR, de Araújo AR, et al. Nanocapsules of Sterculia striata acetylated polysaccharide as a potential monomeric amphotericin B delivery matrix. Int J Biol Macromol. 2019;130:655–663. doi:10.1016/j.ijbiomac.2019.02.076
  • Sombra FM, Richter AR, Araújo De AR, et al. Development of Amphotericin B-loaded Propionate Sterculia striata. Int J Biol Macromol. 2019;146:1133–1141.
  • Italia JL, Yahya MM, Singh D, Ravi Kumar MNV. Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous fungizone®. Pharm Res. 2009;26(6):1324–1331. doi:10.1007/s11095-009-9841-2
  • Tang X, Dai J, Xie J, et al. Enhanced antifungal activity by Ab-modified amphotericin B-loaded nanoparticles using a pH-responsive block copolymer. Nanoscale Res Lett. 2015;10(1):1–11. doi:10.1186/s11671-015-0969-1
  • Van De Ven H, Paulussen C, Feijens PB, et al. PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release. 2012;161(3):795–803. doi:10.1016/j.jconrel.2012.05.037
  • Bian X, Liang S, John J, et al. Development of PLGA-based itraconazole injectable nanospheres for sustained release. Int J Nanomedicine. 2013;8:4521–4531. doi:10.2147/IJN.S54040
  • Burapapadh K, Takeuchi H, Sriamornsak P. Development of pectin nanoparticles through mechanical homogenization for dissolution enhancement of itraconazole. Asian J Pharm Sci. 2016;11(3):365–375. doi:10.1016/j.ajps.2015.07.003
  • Alhakamy NA, Shadab M. Repurposing itraconazole loaded PLGA nanoparticles for improved antitumor efficacy in non-small cell lung cancers. Pharmaceutics. 2019;11(12):12. doi:10.3390/pharmaceutics11120685
  • Pandey R, Ahmad Z, Sharma S, Khuller GK. Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int J Pharm. 2005;301(1–2):268–276. doi:10.1016/j.ijpharm.2005.05.027
  • Endo EH, Makimori RY, Companhoni MVP, Ueda-Nakamura T, Nakamura CV, Dias Filho BP. Ketoconazole-loaded poly-(lactic acid) nanoparticles: characterization and improvement of antifungal efficacy in vitro against Candida and dermatophytes. J Mycol Med. 2020;30(3):101003. doi:10.1016/j.mycmed.2020.101003
  • Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 2010;27(12):2569–2589. doi:10.1007/s11095-010-0233-4
  • Maeda M, Moriuchi S, Sano A, Yoshimine T. New drug delivery system for water-soluble drugs using silicone and its usefulness for local treatment: application of GCV-silicone to GCV/HSV-tk gene therapy for brain tumor. J Control Release. 2002;84(1–2):15–25. doi:10.1016/S0168-3659(02)00236-5
  • Reddy BPK, Yadav HKS, Nagesha DK, Raizaday A, Karim A. Polymeric micelles as novel carriers for poorly soluble drugs-A review. J Nanosci Nanotechnol. 2015;15(6):4009–4018. doi:10.1166/jnn.2015.9713
  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–2387. doi:10.1007/s11095-016-1958-5
  • Deng P, Teng F, Zhou F, Song Z, Meng N, Feng R. Methoxy poly (ethylene glycol)-b-poly (δ-valerolactone) copolymeric micelles for improved skin delivery of ketoconazole. J Biomater Sci Polym Ed. 2017;28(1):63–78. doi:10.1080/09205063.2016.1244371
  • Bachhav YG, Mondon K, Kalia YN, Gurny R, Möller M. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. J Control Release. 2011;153(2):126–132. doi:10.1016/j.jconrel.2011.03.003
  • Rodriguez YJ, Quejada LF, Villamil JC, Baena Y, Parra-Giraldo CM, Perez LD. Development of amphotericin b micellar formulations based on copolymers of poly(Ethylene glycol) and poly(ε-caprolactone) conjugated with retinol. Pharmaceutics. 2020;12(3):3. doi:10.3390/pharmaceutics12030196
  • Tang X, Liang Y, Zhu Y, et al. Anti-transferrin receptor-modified amphotericin B-loaded PLA-PEG nanoparticles cure Candidal meningitis and reduce drug toxicity. Int J Nanomedicine. 2015;10:6227–6241. doi:10.2147/IJN.S84656
  • Chauhan AS. Dendrimers for Drug Delivery. Molecules. 2018;23(4):4. doi:10.3390/molecules23040938
  • Tripathy S, Das MK. Dendrimers and their applications as novel drug delivery carriers. J Appl Pharm Sci. 2013;3(9):142–149.
  • Rao BN, Fathima SR, Viswanath V, Prakash KG, Padmini DS, Reddy PS. Novel citric acid dendritic hydrogels for the delivery of econazole nitrate and its antifungal activity. J Appl Pharm Sci. 2016;6(12):094–102. doi:10.7324/JAPS.2016.601213
  • Winnicka K, Wroblewska M, Wieczorek P, Sacha PT, Tryniszewska E. Hydrogel of Ketoconazole and PAMAM dendrimers: formulation and antifungal activity. Molecules. 2012;17(4):4612–4624. doi:10.3390/molecules17044612
  • Sosnowska K. PAMAM dendrimers affect the in vitro release of clotrimazole from hydrogels irrespective of its molecular state. African J Pharm Pharmacol. 2013;7(10):560–573. doi:10.5897/AJPP2013.3470
  • Khairnar GA, Chavan-Patil AB, Palve PR, Bhise SB, Mourya VK, Kulkarni CG. Dendrimers: potential tool for enhancement of antifungal activity. Int J PharmTech Res. 2010;2(1):736–739.
  • Sharma R, Garg T, Goyal AK, Rath G. Development, optimization and evaluation of polymeric electrospun nanofiber : a tool for local delivery of fluconazole for management of vaginal candidiasis. Artif Cells, Nanomed Biotechnol. 2014;44(2):524–531. doi:10.3109/21691401.2014.966194
  • Albicans C. Antifungal activity of eugenol loaded electrospun PAN nanofiber mats against Candida albicans. Curr Drug Deliv. 2018;15(6):860–866. doi:10.2174/1567201815666180226120436
  • Pourdeyhimi B, Khan SA. Preservation of cell viability and protein conformation on immobilization within nano fibers via electrospinning functionalized yeast. ACS Appl Mater Interfaces. 2013;5(19):9349–9354. doi:10.1021/am4022768
  • Huang S, Zhou L, Li M, Wu Q, Kojima Y. Preparation and properties of electrospun poly (Vinyl Pyrrolidone)/ cellulose nanocrystal/silver nanoparticle composite fibers. Materials. 2016;9(7):523. doi:10.3390/ma9070523
  • Clotrimazole K. Formulation and evaluation of antifungal nanosponge loaded hydrogel for topical delivery. Int J Pharm Pharm Res. 2018;13:362–379.
  • Access O, Press H. Formulation and evaluation of fluconazole loaded nanospongies for improved topical drug delivery. Br J Pharm. 2018;2(2):41–42.
  • Abbas N, Parveen K, Hussain A, Latif S, Shah PA, Ahsan M. Nanosponge-based hydrogel preparation of fluconazole for improved topical delivery. Trop J Pharm Re. 2019;18:215–222. doi:10.4314/tjpr.v18i2.1
  • Sharma R, Pathak K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm Dev Technol. 2011;16(4):367–376. doi:10.3109/10837451003739289
  • Gajbhiye S, Sakharwade S. Silver nanoparticles in cosmetics. J Cosmet Dermatol Sci Appl. 2016;06(01):48–53. doi:10.4236/jcdsa.2016.61007
  • Lee J, Kim K, Sung WS, Kim JG, Lee DG. The silver nanoparticle (Nano-Ag): a new model for antifungal agents the silver nanoparticle (Nano-Ag): a new model for antifungal agents. Silver Nanoparticles. 2014;1:295–308.
  • Ashour SM. Article Silver nanoparticles as antimicrobial agent from Kluyveromyces marxianus and Candida utilis. Int J Curr Microbiol Appl Sci. 2014;3(8):384–396.
  • Kola M, Vec R, Prucek R, Soukupova J, Hamal P, Zbor R. Biomaterials Antifungal activity of silver nanoparticles against Candida sppˇova. Biomaterials. 2009;30:6333–6340. doi:10.1016/j.biomaterials.2009.07.065
  • Tharwat NA, Al-bedak OA, Hamouda RE, Shreif El RH. Antifungal effect of gold nanoparticles on fungi isolated from onychomycosis patients. Al-Azhar J Pharm sci. 2019;60(2):26–42. doi:10.21608/ajps.2019.70234
  • Alam F, Azam A, Khan AU. Gold nanoparticles enhance methylene blue – induced photodynamic therapy : a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomedicine. 2012;7:3245–3257. doi:10.2147/IJN.S31219
  • Jebali A, Haji F, Hajjar E, et al. Triangular gold nanoparticles conjugated with peptide ligands : a new class of inhibitor for Candida albicans secreted aspartyl proteinase. Biochem Pharmacol. 2014;90(4):349–355. doi:10.1016/j.bcp.2014.05.020
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48. doi:10.1016/j.addr.2012.09.037
  • Couvreur P. Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev. 2013;65(1):21–23. doi:10.1016/j.addr.2012.04.010
  • Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:1–13. doi:10.3389/fphar.2015.00286
  • Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun. 2015;468(3):504–510. doi:10.1016/j.bbrc.2015.08.023
  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26–49. doi:10.1002/smll.200700595
  • Wall G, Lopez-Ribot JL. Current antimycotics, new prospects, and future approaches to antifungal therapy. Antibiotics. 2020;9(8):1–10. doi:10.3390/antibiotics9080445