329
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Evaluation of miRNA-143 and miRNA-145 Expression and Their Association with Vitamin-D Status Among Obese and Non-Obese Type-2 Diabetic Patients

ORCID Icon, , , , ORCID Icon, , , & ORCID Icon show all
Pages 2979-2990 | Received 02 Oct 2022, Accepted 13 Dec 2022, Published online: 28 Dec 2022

References

  • Singla P, Bardoloi A, Parkash AA. Metabolic effects of obesity: a review. World J Diabetes. 2010;1(3):76. doi:10.4239/wjd.v1.i3.76
  • Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–787. doi:10.1038/414782a
  • Astrup A, Finer N. Redefining type 2 diabetes: ‘diabesity’ or ‘obesity dependent diabetes mellitus’? Obes Rev. 2000;1:57–59. doi:10.1046/j.1467-789x.2000.00013.x
  • National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). National Diabetes Statistics: complications of diabetes in the United States; 2004. Available from http://diabetes.niddk.nih.gov/DM/PUBS/statistics/#complications. Accessed April 26, 2009.
  • Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005;307:373–375. doi:10.1126/science.1104342
  • Rhodes CJ. Type 2 diabetes—a matter of beta-cell life and death? Science. 2005;307:380–384. doi:10.1126/science.1104345
  • Jordan SD, Krüger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol. 2011;13(4):434–446. doi:10.1038/ncb2211
  • Xihua L, Shengjie T, Weiwei G, et al. Circulating miR-143-3p inhibition protects against insulin resistance in Metabolic Syndrome via targeting of the insulin-like growth factor 2 receptor. Transl Res. 2019;205:33–43. doi:10.1016/j.trsl.2018.09.006
  • Barutta F, Tricarico M, Corbelli A, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One. 2013;8(11):e73798. PMID: 24223694; PMCID: PMC3817183. doi:10.1371/journal.pone.0073798
  • Cho WC. MiRNAs in cancer – from research to therapy. Biochim Biophys Acta. 1805;2010:209–217.
  • Nakashima A, Yokoyama K, Yokoo T, Urashima M. Role of vitamin D in diabetes mellitus and chronic kidney disease. World J Diabetes. 2016;7:89–100. doi:10.4239/wjd.v7.i5.89
  • Dhas Y, Banerjee J, Damle G, Mishra N. Association of vitamin D deficiency with insulin resistance in middle-aged type 2 diabetics. Clin Chim Acta. 2019;492:95–101. doi:10.1016/j.cca.2019.02.014
  • Hussain Gilani SY, Bibi S, Siddiqui A, Ali Shah SR, Akram F, Rehman MU. Obesity and diabetes as determinants of vitamin D deficiency. JAMC. 2019;31:432–435.
  • Meo SA. Prevalence and future prediction of type 2 diabetes mellitus in the Kingdom of Saudi Arabia: a systematic review of published studies. J Pakistan Med Assoc. 2016;66(6):722–725.
  • Praet SF, van Loon LJ. Exercise: the brittle cornerstone of type 2 diabetes treatment. Diabetologia. 2008;51:398–401. doi:10.1007/s00125-007-0910-y
  • Pedersen BK, Saltin B. Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25(Suppl. S3):1–72. doi:10.1111/sms.12581
  • Hawley JA, Lessard SJ. Exercise training-induced improvements in insulin action. Acta Physiol. 2008;192:127–135. doi:10.1111/j.1748-1716.2007.01783.x
  • Zanuso S, Sacchetti M, Sundberg CJ, Orlando G, Benvenuti P, Balducci S. Exercise in type 2 diabetes: genetic, metabolic and neuromuscular adaptations. A review of the evidence. Br J Sports Med. 2017;51:1533–1538. doi:10.1136/bjsports-2016-096724
  • Montero D, Lundby C. Refuting the myth of non-response to exercise training: ‘non-responders’ do respond to higher dose of training. J Physiol. 2017;595:3377–3387. doi:10.1113/JP273480
  • Li B, Fan J, Chen N, Novel A. Regulator of Type II Diabetes: microRNA-143. Trends Endocrinol Metab. 2018;29:380–388. doi:10.1016/j.tem.2018.03.019
  • Riches K, Alshanwani AR, Warburton P, et al. Elevated expression levels of miR-143/5 in saphenous vein smooth muscle cells from cases with Type 2 diabetes drive persistent changes in phenotype and function. J Mol Cell Cardiol. 2014;74:240–250. doi:10.1016/j.yjmcc.2014.05.018
  • Takanabe R, Ono K, Abe Y, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed highfat diet. Biochem Biophys Res Commun. 2008;376(4):728–732. doi:10.1016/j.bbrc.2008.09.050
  • Xie H, Sun L, Lodish HF. Targeting microRNAs in obesity. Expert Opin Ther Targets. 2009;13:1227–1238. doi:10.1517/14728220903190707
  • Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004;279(50):52361–52365. doi:10.1074/jbc.C400438200
  • Nazari M, Saberi A, Karandish M, Jalali MT. Adipose tissue miRNA level variation through conjugated linoleic acid supplementation in diet-induced obese rats. Adv Clin Exp Med. 2018;27(11):1477–1482. doi:10.17219/acem/93728
  • Hemmings KE, Riches-Suman K, Bailey MA, O’Regan DJ, Turner NA, Porter KE. Role of MicroRNA-145 in DNA damage signalling and senescence in vascular smooth muscle cells of type 2 diabetic cases. Cells. 2021;10:919. doi:10.3390/cells10040919
  • Gao Y, Zheng T, Ran X, et al. Vitamin D and incidence of prediabetes or type 2 diabetes: a four-year follow-up community-based study. Dis Markers. 2018;2018:1926308. doi:10.1155/2018/1926308
  • Fu J, Han L, Zhao Y, et al. Vitamin D levels are associated with metabolic syndrome in adolescents and young adults: the BCAMS study. Clin Nutr. 2019;38:2161–2167. doi:10.1016/j.clnu.2018.08.039
  • Lips P, Eekhoff M, van Schoor N, et al. Vitamin D and type 2 diabetes. J Steroid Biochem Mol Biol. 2017;173:280–285. doi:10.1016/j.jsbmb.2016.11.021
  • Gulseth HL, Wium C, Angel K, Eriksen EF, Birkeland KI. Effects of vitamin D supplementation on insulin sensitivity and insulin secretion in subjects with type 2 diabetes and vitamin D deficiency: a randomized controlled trial. Diabetes Care. 2017;40(7):872–878. doi:10.2337/dc16-2302
  • Kabadi SM, Lee BK, Liu L. Joint effects of obesity and vitamin D insufficiency on insulin resistance and type 2 diabetes: results from the NHANES 2001– 2006. Diabetes Care. 2012;35(10):2048–2054. doi:10.2337/dc12-0235
  • Lu L, Bennett DA, Millwood IY, et al. Association of vitamin D with risk of type 2 diabetes: a Mendelian randomisation study in European and Chinese adults. PLoS Med. 2018;15:e1002566. doi:10.1371/journal.pmed.1002566
  • Muñoz-Garach A, García-Fontana B, Muñoz-Torres M. Vitamin D status, calcium intake and risk of developing type 2 diabetes: an unresolved issue. Nutrients. 2019;11:642. doi:10.3390/nu11030642
  • Usluogullari CA, Balkan F, Caner S, et al. The relationship between microvascular complications and vitamin D deficiency in type 2 diabetes mellitus. BMC Endocr Disord. 2015;15:33. doi:10.1186/s12902-015-0029-y
  • Al Hewishel MA, Bahgat M, Al Huwaiyshil A, Alsubie MA, Alhassan A. 25(OH)D serum level in non-diabetic and type II diabetic patients: a Cross-Sectional Study. Cureus. 2020;12(6):e8910. doi:10.7759/cureus.8910
  • Yang K, Liu J, Fu S, et al. Vitamin D status and correlation with glucose and lipid metabolism in Gansu Province, China. Diabetes Metab Syndr Obes. 2020;13:1555–1563. doi:10.2147/DMSO.S249049
  • Bhatt SP, Misra A, Gulati S, Singh N, Pandey RM. Lower vitamin D levels are associated with higher blood glucose levels in Asian Indian women with pre-diabetes: a population-based cross-sectional study in North India. BMJ Open Diabetes Res Care. 2018;6(1):e000501. doi:10.1136/bmjdrc-2017-000501
  • Parker J, Hashmi O, Dutton D, et al. Levels of vitamin D and cardiometabolic disorders: systematic review and meta-analysis. Maturitas. 2010;65:225–236. doi:10.1016/j.maturitas.2009.12.013