314
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Profiles of Independent-Comorbidity Groups in Senior COVID-19 Patients Reveal Low Fatality Associated with Standard Care and Low-Dose Hydroxychloroquine over Antivirals

ORCID Icon, , , , , , , , , , & show all
Pages 1215-1229 | Received 26 Jan 2023, Accepted 03 Apr 2023, Published online: 01 May 2023

References

  • Umakanthan S, Sahu P, Ranade AV, et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J. 2020;96(1142):753–758. doi:10.1136/POSTGRADMEDJ-2020-138234
  • Umakanthan S, Patil S, Subramaniam N, Sharma R. COVID-19 vaccine hesitancy and resistance in India explored through a population-based longitudinal survey. Vaccines. 2021;9(10):1064. doi:10.3390/VACCINES9101064/S1
  • Umakanthan S, Bukelo MM, Gajula SS. The Commonwealth Caribbean COVID-19: regions Resilient Pathway During Pandemic. Front Public Health. 2022;10:1288. doi:10.3389/FPUBH.2022.844333/BIBTEX
  • Umakanthan S, Lawrence S. Predictors of COVID-19 vaccine hesitancy in Germany: a cross-sectional, population-based study. Postgrad Med J. 2022;98:1164. doi:10.1136/POSTGRADMEDJ-2021-141365
  • Umakanthan S, Senthil S, John S, et al. The Effect of Statins on Clinical Outcome Among Hospitalized Patients With COVID-19: a Multi-Centric Cohort Study. Front Pharmacol. 2022;13:2558. doi:10.3389/FPHAR.2022.742273/BIBTEX
  • Thomas Glück M. Infection Risk with Corticosteroid Therapy. NEJM J Watch. 2016;2016:43. doi:10.1056/NEJM-JW.NA41557
  • Zimmermann P, Curtis N. Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child. 2021;106(5):429–439. doi:10.1136/ARCHDISCHILD-2020-320338
  • Fischer A. Resistance of children to Covid-19. How? Mucosal Immunol. 2020;13(4):563–565. doi:10.1038/s41385-020-0303-9
  • Chan Y, Fong S, Poh C, et al. Asymptomatic COVID‐19: disease tolerance with efficient anti‐viral immunity against SARS‐CoV‐2. EMBO Mol Med. 2021;13:6. doi:10.15252/EMMM.202114045
  • González-García N, Castilla-Peón MF, Solórzano Santos F, et al. Covid-19 Incidence and Mortality by Age Strata and Comorbidities in Mexico City: a Focus in the Pediatric Population. Front Public Health. 2021;9:1298. doi:10.3389/fpubh.2021.738423
  • Acharya D, Lee K, Lee DS, Lee YS, Moon SS. Mortality Rate and Predictors of Mortality in Hospitalized COVID-19 Patients with Diabetes. Healthcare. 2020;8(3):435. doi:10.3390/HEALTHCARE8030338
  • Rastad H, Karim H, Ejtahed HS, et al. Risk and predictors of in-hospital mortality from COVID-19 in patients with diabetes and cardiovascular disease. Diabetol Metab Syndr. 2020;12:1. doi:10.1186/S13098-020-00565-9
  • Alguwaihes AM, Al-Sofiani ME, Megdad M, et al. Diabetes and Covid-19 among hospitalized patients in Saudi Arabia: a single-centre retrospective study. Cardiovasc Diabetol. 2020;19(1):43. doi:10.1186/s12933-020-01184-4
  • Sheshah E, Sabico S, Albakr RM, et al. Prevalence of diabetes, management and outcomes among Covid-19 adult patients admitted in a specialized tertiary hospital in Riyadh, Saudi Arabia. Diabetes Res Clin Pract. 2021:172. doi:10.1016/J.DIABRES.2020.108538
  • Guo L, Shi Z, Zhang Y, et al. Comorbid diabetes and the risk of disease severity or death among 8807 COVID-19 patients in China: a meta-analysis. Diabetes Res Clin Pract. 2020:166. doi:10.1016/J.DIABRES.2020.108346
  • Kumar A, Arora A, Sharma P, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab Syndr. 2020;14(4):535–545. doi:10.1016/J.DSX.2020.04.044
  • Miller LE, Bhattacharyya R, Miller AL. Diabetes mellitus increases the risk of hospital mortality in patients with Covid-19: systematic review with meta-analysis. Medicine. 2020;99(40):e22439. doi:10.1097/MD.0000000000022439
  • Shi Q, Zhang X, Jiang F, et al. Clinical Characteristics and Risk Factors for Mortality of COVID-19 Patients With Diabetes in Wuhan, China: a Two-Center, Retrospective Study. Diabetes Care. 2020;43(7):1382–1391. doi:10.2337/DC20-0598
  • Varikasuvu SR, Dutt N, Thangappazham B, Varshney S. Diabetes and COVID-19: a pooled analysis related to disease severity and mortality. Prim Care Diabetes. 2021;15(1):24–27. doi:10.1016/j.pcd.2020.08.015
  • Suleyman G, Fadel RA, Malette KM, et al. Clinical Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. JAMA Netw Open. 2020;3(6):e2012270. doi:10.1001/JAMANETWORKOPEN.2020.12270
  • Hillson R. COVID-19: diabetes and death. A call to action. Practical Diabetes. 2020;37(3):76–78. doi:10.1002/PDI.2271
  • Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223–237. doi:10.1038/S41581-019-0244-2
  • Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. doi:10.1016/S2213-2600(20)30116-8
  • Ma RCW, Holt RIG. COVID-19 and diabetes. Diabet Med. 2020;37(5):723–725. doi:10.1111/DME.14300
  • Pranata R, Lim MA, Huang I, Raharjo SB, Lukito AA. Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: a systematic review, meta-analysis and meta-regression. J Renin Angiotensin Aldosterone Syst. 2020;21:2. doi:10.1177/1470320320926899
  • Schiffrin EL, Flack JM, Ito S, Muntner P, Webb RC. Hypertension and COVID-19. Am J Hypertens. 2020;33(5):373–374. doi:10.1093/AJH/HPAA057
  • Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020:368. doi:10.1136/BMJ.M1091
  • Libby P, Loscalzo J, Ridker PM, et al. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol. 2018;72(17):2071–2081. doi:10.1016/J.JACC.2018.08.1043
  • Bilaloglu S, Aphinyanaphongs Y, Jones S, Iturrate E, Hochman J, Berger JS. Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System. JAMA. 2020;324(8):799–801. doi:10.1001/JAMA.2020.13372
  • Bangalore S, Sharma A, Slotwiner A, et al. ST-Segment Elevation in Patients with Covid-19 - A Case Series. N Engl J Med. 2020;382(25):2478–2480. doi:10.1056/NEJMC2009020
  • Modin D, Claggett B, Sindet-Pedersen C, et al. Acute COVID-19 and the Incidence of Ischemic Stroke and Acute Myocardial Infarction. Circulation. 2020;142(21):2080–2082. doi:10.1161/CIRCULATIONAHA.120.050809
  • Katsoularis I, Fonseca-Rodríguez O, Farrington P, Lindmark K, Fors Connolly AM. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet. 2021;398(10300):599–607. doi:10.1016/S0140-6736(21)00896-5
  • Team TNCPERE. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) — China, 2020. China CDC Wkly. 2020;2(8):113.
  • Chow YW, Pietranico R, Mukerji A. Studies of oxygen binding energy to hemoglobin molecule. Biochem Biophys Res Commun. 1975;66(4):1424–1431. doi:10.1016/0006-291X(75)90518-5
  • Liang C, Zhang W, Li S, Qin G. Coronary heart disease and COVID-19: a meta-analysis. Med Clin (Barc). 2021;156(11):547–554. doi:10.1016/J.MEDCLI.2020.12.017
  • Yonas E, Alwi I, Pranata R, et al. Effect of heart failure on the outcome of COVID-19 - A meta analysis and systematic review. Am J Emerg Med. 2021;46:204–211. doi:10.1016/J.AJEM.2020.07.009
  • Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. doi:10.1016/S2213-2600(20)30079-5
  • Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829–838. doi:10.1016/J.KINT.2020.03.005
  • Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The Novel Coronavirus 2019 epidemic and kidneys. Kidney Int. 2020;97(5):824–828. doi:10.1016/J.KINT.2020.03.001
  • Mohamed MMB, Lukitsch I, Torres-Ortiz AE, et al. Acute Kidney Injury Associated with Coronavirus Disease 2019 in Urban New Orleans. Kidney360. 2020;1(7):614–622. doi:10.34067/KID.0002652020
  • Li Z, Wu M, Yao J, et al. Caution on Kidney Dysfunctions of COVID-19 Patients. SSRN Electronic J. 2020. doi:10.2139/SSRN.3559601
  • Shi Q, Zhao K, Yu J, et al. Clinical characteristics of 101 COVID-19 nonsurvivors in Wuhan, China: a retrospective study. medRxiv. 2020. doi:10.1101/2020.03.04.20031039
  • Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829. doi:10.1016/J.KINT.2020.03.005
  • Arentz M, Yim E, Klaff L, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323(16):1612–1614. doi:10.1001/JAMA.2020.4326
  • Li Z, Wu M, Yao J, et al. Caution on Kidney Dysfunctions of COVID-19 Patients. SSRN Electronic J. 2020. doi:10.2139/SSRN.3559601
  • Pan X, Xu D, Zhang H, Zhou W. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med. 2020;46(6):1114–1116. doi:10.1007/S00134-020-06026-1
  • Chau TN, Lee KC, Yao H, et al. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology. 2004;39(2):302–310. doi:10.1002/HEP.20111
  • Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi:10.1016/S0140-6736(20)30211-7
  • Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical Features of 69 Cases With Coronavirus Disease 2019 in Wuhan, China. Clin Infect Dis. 2020;71(15):769–777. doi:10.1093/CID/CIAA272
  • Cai Q, Huang D, Ou P, et al. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. Allergy. 2020;75(7):1742–1752. doi:10.1111/ALL.14309
  • Zhang B, Zhou X, Qiu Y, et al. Clinical characteristics of 82 cases of death from COVID-19. PLoS One. 2020;15:7. doi:10.1371/JOURNAL.PONE.0235458
  • Mallet V, Beeker N, Bouam S, et al. Prognosis of French COVID-19 patients with chronic liver disease: a national retrospective cohort study for 2020. J Hepatol. 2021;75(4):848–855. doi:10.1016/J.JHEP.2021.04.052
  • Udupa A, Leverenz D, Balevic SJ, Sadun RE, Tarrant TK, Rogers JL. Hydroxychloroquine and COVID-19: a Rheumatologist’s Take on the Lessons Learned. Curr Allergy Asthma Rep. 2021;21:1. doi:10.1007/S11882-020-00983-9
  • Alvarez JC, Davido B, Moine P, et al. Population Pharmacokinetics of Hydroxychloroquine and 3 Metabolites in COVID-19 Patients and Pharmacokinetic/Pharmacodynamic Application. Pharmaceuticals. 2022;15(2):256. doi:10.3390/PH15020256/S1
  • Giudicessi JR, Roden DM, Wilde AAM, Ackerman MJ. Genetic susceptibility for COVID-19–associated sudden cardiac death in African Americans. Heart Rhythm. 2020;17(9):1487–1492. doi:10.1016/J.HRTHM.2020.04.045
  • Takahashi T, Luzum JA, Nicol MR, Jacobson PA. Pharmacogenomics of COVID-19 therapies. NPJ Genomic Med. 2020;5(1):35. doi:10.1038/s41525-020-00143-y
  • Ghasemnejad-Berenji M, Pashapour S. Favipiravir and COVID-19: a Simplified Summary. Drug Res. 2021;71(3):166–170. doi:10.1055/A-1296-7935/ID/R2020-09-2140-0029
  • Kurt Y, Özmen Ö. Effects of Vitamin C on the Oral-Nasal Mucosal Damage Caused by Favipiravir in Old and Young Rats. Cureus. 2022;14:9. doi:10.7759/CUREUS.28796
  • Hashemian SMR, Farhadi T, Velayati AA. A review on favipiravir: the properties, function, and usefulness to treat COVID-19. Expert Rev Anti Infect Ther. 2021;19(8):1029–1037. doi:10.1080/14787210.2021.1866545
  • Halpin DMG, Criner GJ, Papi A, et al. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2021;203(1):24–36. doi:10.1164/RCCM.202009-3533SO
  • Pinzón MA, Ortiz S, Holguín H, et al. Dexamethasone vs methylprednisolone high dose for Covid-19 pneumonia. PLoS One. 2021;16:5. doi:10.1371/JOURNAL.PONE.0252057
  • Li J, Liao X, Zhou Y, et al. Comparison of Associations Between Glucocorticoids Treatment and Mortality in COVID-19 Patients and SARS Patients: a Systematic Review and Meta-Analysis. Shock. 2021;56(2):215–228. doi:10.1097/SHK.0000000000001738
  • Jacobi A, Chung M, Bernheim A, Eber C. Portable chest X-ray in coronavirus disease-19 (COVID-19): a pictorial review. Clin Imaging. 2020;64:35–42. doi:10.1016/J.CLINIMAG.2020.04.001
  • Borghesi A, Maroldi R. COVID-19 outbreak in Italy: experimental chest X-ray scoring system for quantifying and monitoring disease progression. Radiol Med. 2020;125(5):509–513. doi:10.1007/S11547-020-01200-3
  • Nava S, Schreiber A, Domenighetti G. Noninvasive ventilation for patients with acute lung injury or acute respiratory distress syndrome. Respir Care. 2011;56(10):1583–1588. doi:10.4187/RESPCARE.01209
  • Keenan SP, Sinuff T, Burns KEA, et al. Clinical practice guidelines for the use of noninvasive positive-pressure ventilation and noninvasive continuous positive airway pressure in the acute care setting. CMAJ. 2011;183:3. doi:10.1503/CMAJ.100071
  • Fan BE, Chong VCL, Chan SSW, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol. 2020;95(6):E131–E134. doi:10.1002/AJH.25774
  • Kaushansky. Williams Hematology, 9e | accessMedicine | mcGraw Hill Medical. Williams Hematology, 9e Eds. Kenneth Kaushansky, et al. McGraw Hill; 2015. Available from: https://accessmedicine.mhmedical.com/book.aspx?bookid=1581&isMissingChapter=true. Accessed December 5, 2021.
  • Logette E, Lorin C, Favreau C, et al. A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Front Public Health. 2021;9:695139. doi:10.3389/FPUBH.2021.695139/FULL
  • Wu J, Zhang J, Sun X, et al. Influence of diabetes mellitus on the severity and fatality of SARS-CoV-2 (COVID-19) infection. Diabetes Obes Metab. 2020;22(10):1907–1914. doi:10.1111/DOM.14105
  • Abu-Farha M, Al-Mulla F, Thanaraj TA, et al. Impact of Diabetes in Patients Diagnosed With COVID-19. Front Immunol. 2020;11. doi:10.3389/FIMMU.2020.576818
  • Roganović J. Downregulation of microRNA-146a in diabetes, obesity and hypertension may contribute to severe COVID-19. Med Hypotheses. 2021;146. doi:10.1016/J.MEHY.2020.110448
  • van Niekerk G, van der Merwe M, Engelbrecht AM. Diabetes and susceptibility to infections: implication for COVID-19. Immunology. 2021;164(3):467–475. doi:10.1111/IMM.13383
  • Perez A, Naljayan M, Shuja I, Florea A, Reisin E. Hypertension, Obesity, and COVID-19: a Collision of Pandemics. Curr Hypertens Rep. 2021;23(6). doi:10.1007/S11906-021-01153-6
  • Ravichandran B, Grimm D, Krüger M, Kopp S, Infanger M, Wehland M. SARS-CoV-2 and hypertension. Physiol Rep. 2021;9(11). doi:10.14814/PHY2.14800
  • Augustine R, Nayeem SA, et al. Increased complications of COVID-19 in people with cardiovascular disease: role of the renin-angiotensin-aldosterone system (RAAS) dysregulation. Chem Biol Interact. 2022:351. doi:10.1016/J.CBI.2021.109738
  • Cowie MR, Mourilhe-Rocha R, Chang HY, et al. The impact of the COVID-19 pandemic on heart failure management: global experience of the OPTIMIZE Heart Failure Care network. Int J Cardiol. 2022;363:240–246. doi:10.1016/J.IJCARD.2022.06.022
  • Prabhakaran D, Singh K, Kondal D, et al. Cardiovascular Risk Factors and Clinical Outcomes among Patients Hospitalized with COVID-19: findings from the World Heart Federation COVID-19 Study. Glob Heart. 2022;17:1. doi:10.5334/GH.1128
  • Dan S, Pant M, Upadhyay SK. The Case Fatality Rate in COVID-19 Patients With Cardiovascular Disease: global Health Challenge and Paradigm in the Current Pandemic. Curr Pharmacol Rep. 2020;6(6):315–324. doi:10.1007/S40495-020-00239-0
  • Ruge M, Gomez JMD. Impact of pre-existing heart failure on 60-day outcomes in patients hospitalized with COVID-19. Am Heart j Plus. 2021;4:100022. doi:10.1016/J.AHJO.2021.100022
  • Babapoor-Farrokhran S, Alzubi J, Port Z, et al. Impact of COVID-19 on Heart Failure Hospitalizations. SN Compr Clin Med. 2021;3(10):2088–2092. doi:10.1007/S42399-021-01005-Z
  • Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014;194:145–158. doi:10.1016/J.VIRUSRES.2014.09.011
  • Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi:10.1016/S0140-6736(20)30937-5
  • Al-Ghamdi MA, Al-Raddadi RM, Ramadan IK, et al. Survival, mortality, and related comorbidities among COVID-19 patients in Saudi Arabia: a hospital-based retrospective cohort study. Saudi Med J. 2022;43(8):915–926. doi:10.15537/SMJ.2022.43.8.20220182
  • Aljuaid M, Alotair H, Alnajjar F, et al. Risk factors associated with in-hospital mortality patients with COVID-19 in Saudi Arabia. PLoS One. 2022;17(6):e0270062. doi:10.1371/JOURNAL.PONE.0270062
  • Hahn VS, Knutsdottir H, Luo X, et al. Myocardial Gene Expression Signatures in Human Heart Failure With Preserved Ejection Fraction. Circulation. 2021;143(2):120–134. doi:10.1161/CIRCULATIONAHA.120.050498
  • Manolis AS, Manolis AA, Manolis TA, Melita H. Sudden death in heart failure with preserved ejection fraction and beyond: an elusive target. Heart Fail Rev. 2019;24(6):847–866. doi:10.1007/S10741-019-09804-2
  • Shafeghat M, Aminorroaya A, Rezaei N. How Stable Ischemic Heart Disease Leads to Acute Coronary Syndrome in COVID-19? Acta Biomed. 2021;92(5):65. doi:10.23750/ABM.V92I5.12013
  • Adapa S, Chenna A, Balla M, et al. COVID-19 Pandemic Causing Acute Kidney Injury and Impact on Patients With Chronic Kidney Disease and Renal Transplantation. J Clin Med Res. 2020;12(6):352–361. doi:10.14740/JOCMR4200
  • Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The Novel Coronavirus 2019 epidemic and kidneys. Kidney Int. 2020;97(5):824. doi:10.1016/J.KINT.2020.03.001
  • Ma Y, Diao B, Lv X, et al. 2019 novel coronavirus disease in hemodialysis (HD) patients: report from one HD center in Wuhan, China. medRxiv. 2020. doi:10.1101/2020.02.24.20027201
  • Pirola CJ, Sookoian S. SARS-CoV-2 virus and liver expression of host receptors: putative mechanisms of liver involvement in COVID-19. Liver Int. 2020;40(8):2038–2040. doi:10.1111/LIV.14500
  • De Smet V, Verhulst S, van Grunsven LA. Single cell RNA sequencing analysis did not predict hepatocyte infection by SARS-CoV-2. J Hepatol. 2020;73(4):993–995. doi:10.1016/J.JHEP.2020.05.030
  • Catteau L, Dauby N, Montourcy M, et al. Low-dose hydroxychloroquine therapy and mortality in hospitalised patients with COVID-19: a nationwide observational study of 8075 participants. Int J Antimicrob Agents. 2020;56(4):106144. doi:10.1016/J.IJANTIMICAG.2020.106144
  • Di Castelnuovo A, Costanzo S, Cassone A, Cauda R, De Gaetano G, Iacoviello L. Hydroxychloroquine and mortality in COVID-19 patients: a systematic review and a meta-analysis of observational studies and randomized controlled trials. Pathog Glob Health. 2021;115(7–8):456–466. doi:10.1080/20477724.2021.1936818
  • Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155–166. doi:10.1038/S41584-020-0372-X
  • Task Force Therapeutics Viral Disease. Interim Clinical Guidance for Adults with Confirmed COVID-19, Belgium 2022. Available from: https://kce.fgov.be/sites/default/files/2023-03/COVID-19_InterimGuidelines_Treatment_ENG.pdf. Accessed April 29, 2023.
  • Boralli VB. COVID-19 Pandemic-A Narrative Review of the Potential Roles of Chloroquine and Hydroxychloroquine. Available from: http://www.prisma-statement.org. Accessed November 30, 2022.
  • Almoosa Z, Saad M, Qara S, et al. Favipiravir versus standard of care in patients with severe COVID-19 infections: a retrospective comparative study. J Infect Public Health. 2021;14(9):1247. doi:10.1016/J.JIPH.2021.08.022
  • Bosaeed M, Alharbi A, Mahmoud E, et al. Efficacy of favipiravir in adults with mild COVID-19: a randomized, double-blind, multicentre, placebo-controlled clinical trial. Clin Microbiol Infection. 2022;28(4):602. doi:10.1016/J.CMI.2021.12.026
  • Mutair A, Shamou J, Alhumaid S, et al. Overview of clinical outcome and therapeutic effectiveness of Favipiravir in patients with COVID-19 admitted to intensive care unit, Riyadh, Saudi Arabia. J Infect Public Health. 2022;15(4):389. doi:10.1016/J.JIPH.2022.01.013
  • Al-Muhsen S, Al-Numair NS, Saheb Sharif-Askari N, et al. Favipiravir Effectiveness and Safety in Hospitalized Moderate-Severe COVID-19 Patients: observational Prospective Multicenter Investigation in Saudi Arabia. Front Med. 2022;9:826247. doi:10.3389/FMED.2022.826247
  • AlQahtani M, Kumar N, Aljawder D, et al. Randomized controlled trial of favipiravir, hydroxychloroquine, and standard care in patients with mild/moderate COVID-19 disease. Sci Rep. 2022;12(1):4925. doi:10.1038/S41598-022-08794-W
  • Özlüşen B, Kozan Ş, Akcan RE, et al. Effectiveness of favipiravir in COVID-19: a live systematic review. Eur J Clin Microbiol Infectious Dis. 2021;40(12):2575. doi:10.1007/S10096-021-04307-1
  • Sinha S, Rosin NL, Arora R, et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med. 2022;28(1):201. doi:10.1038/S41591-021-01576-3
  • Wyler E, Adler JM, Eschke K, et al. Key benefits of dexamethasone and antibody treatment in COVID-19 hamster models revealed by single-cell transcriptomics. Molecular Therapy. 2022;30(5):1952. doi:10.1016/J.YMTHE.2022.03.014