220
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Retrospective Cohort Study: Predicting 90-Day Mortality for ICU Trauma Patients with a Machine Learning Algorithm Using XGBoost Using MIMIC-III Database

, , & ORCID Icon
Pages 2625-2640 | Received 08 Jun 2023, Accepted 29 Aug 2023, Published online: 06 Sep 2023

References

  • Collaborators GBDCo D. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–1788.
  • Rhee P, Joseph B, Pandit V, et al. Increasing trauma deaths in the United States. Ann Surg. 2014;260(1):13–21. doi:10.1097/SLA.0000000000000600
  • Azami-Aghdash S, Sadeghi-Bazargani H, Shabaninejad H, Abolghasem Gorji H. Injury epidemiology in Iran: a systematic review. J Inj Violence Res. 2017;9(1):27–40. doi:10.5249/jivr.v9i1.852
  • Yousefzadeh Chabok S, Ranjbar Taklimie F, Malekpouri R, Razzaghi A. Predicting mortality, hospital length of stay and need for surgery in pediatric trauma patients. Chin J Traumatol. 2017;20(6):339–342. doi:10.1016/j.cjtee.2017.04.011
  • Butcher N, Balogh ZJ. The definition of polytrauma: the need for international consensus. Injury. 2009;40 Suppl 4:S12–22. doi:10.1016/j.injury.2009.10.032
  • Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: the TRISS method. Trauma Score and the Injury Severity Score. J Trauma. 1987;27(4):370–378. doi:10.1097/00005373-198704000-00005
  • Cook A, Osler T, Glance L, et al. Comparison of two prognostic models in trauma outcome. Br J Surg. 2018;105(5):513–519. doi:10.1002/bjs.10764
  • Kang WS, Chung H, Ko H, et al. Artificial intelligence to predict in-hospital mortality using novel anatomical injury score. Sci Rep. 2021;11(1):23534. doi:10.1038/s41598-021-03024-1
  • Rau CS, Wu SC, Chuang JF, et al. Machine learning models of survival prediction in trauma patients. J Clin Med. 2019;8(6):799. doi:10.3390/jcm8060799
  • Johnson AE, Stone DJ, Celi LA, Pollard TJ. The MIMIC Code Repository: enabling reproducibility in critical care research. J Am Med Inform Assoc. 2018;25(1):32–39. doi:10.1093/jamia/ocx084
  • Gruber WH, Powell AC, Torous JB. The power of capturing and using information at the point of care. Healthc. 2017;5(3):86–88. doi:10.1016/j.hjdsi.2016.09.004
  • Obermeyer Z, Emanuel EJ. Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. N Engl J Med. 2016;375(13):1216–1219. doi:10.1056/NEJMp1606181
  • Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2007;2:59–77.
  • Mooney SJ, Pejaver V. Big Data in Public Health: terminology, Machine Learning, and Privacy. Annu Rev Public Health. 2018;39(1):95–112. doi:10.1146/annurev-publhealth-040617-014208
  • Do Nascimento PM, Medeiros IG, Falcao RM, Stransky B, de Souza JES. A decision tree to improve identification of pathogenic mutations in clinical practice. BMC Med Inform Decis Mak. 2020;20(1):52. doi:10.1186/s12911-020-1060-0
  • Nicora G, Rios M, Abu-Hanna A, Bellazzi R. Evaluating pointwise reliability of machine learning prediction. J Biomed Inform. 2022;127:103996. doi:10.1016/j.jbi.2022.103996
  • Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H. State-of-the-art in artificial neural network applications: a survey. Heliyon. 2018;4(11):e00938. doi:10.1016/j.heliyon.2018.e00938
  • Laudani A, Lozito GM, Riganti Fulginei F, Salvini A. On Training Efficiency and Computational Costs of a Feed Forward Neural Network: a Review. Comput Intell Neurosci. 2015;2015:818243. doi:10.1155/2015/818243
  • Ositanwosu OE, Huang Q, Liang Y, Nwokoye CH. Automatic measurement and prediction of Chinese Grown Pigs weight using multilayer perceptron neural networks. Sci Rep. 2023;13(1):2573. doi:10.1038/s41598-023-28433-2
  • Ozer ME, Sarica PO, Arga KY. New Machine Learning Applications to Accelerate Personalized Medicine in Breast Cancer: rise of the Support Vector Machines. OMICS. 2020;24(5):241–246. doi:10.1089/omi.2020.0001
  • Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genomics Proteomics. 2018;15(1):41–51. doi:10.21873/cgp.20063
  • Zhang Z. Introduction to machine learning: k-nearest neighbors. Ann Transl Med. 2016;4(11):218. doi:10.21037/atm.2016.03.37
  • Yuan KC, Tsai LW, Lee KH, et al. The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit. Int J Med Inform. 2020;141:104176. doi:10.1016/j.ijmedinf.2020.104176
  • Zhang Z, Ho KM, Hong Y. Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care. Crit Care. 2019;23(1):112. doi:10.1186/s13054-019-2411-z
  • Xu Y, Han D, Huang T, et al. Predicting ICU Mortality in Rheumatic Heart Disease: comparison of XGBoost and Logistic Regression. Front Cardiovasc Med. 2022;9:847206. doi:10.3389/fcvm.2022.847206
  • Hou N, Li M, He L, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J Transl Med. 2020;18(1):462. doi:10.1186/s12967-020-02620-5
  • Yijing L, Wenyu Y, Kang Y, et al. Prediction of cardiac arrest in critically ill patients based on bedside vital signs monitoring. Comput Methods Programs Biomed. 2022;214:106568. doi:10.1016/j.cmpb.2021.106568
  • Goldberger AL, Amaral LA, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215–220. doi:10.1161/01.CIR.101.23.e215
  • Johnson AE, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035. doi:10.1038/sdata.2016.35
  • Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. doi:10.1136/bmj.g7594
  • Wu WT, Li YJ, Feng AZ, et al. Data mining in clinical big data: the frequently used databases, steps, and methodological models. Mil Med Res. 2021;8(1):44. doi:10.1186/s40779-021-00338-z
  • Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–1139. doi:10.1097/01.mlr.0000182534.19832.83
  • Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–383. doi:10.1016/0021-9681(87)90171-8
  • Kutcher ME, Pepper MB, Morabito D, Sunjaya D, Knudson MM, Cohen MJ. Finding the sweet spot: identification of optimal glucose levels in critically injured patients. J Trauma. 2011;71(5):1108–1114. doi:10.1097/TA.0b013e318232e35b
  • Bahloul M, Chaari A, Chabchoub I, et al. Outcome analysis and outcome predictors of traumatic head injury in childhood: analysis of 454 observations. J Emerg Trauma Shock. 2011;4(2):198–206. doi:10.4103/0974-2700.82206
  • Zhang Z, Rousson V, Lee WC, et al. Decision curve analysis: a technical note. Ann Transl Med. 2018;6(15):308. doi:10.21037/atm.2018.07.02
  • Lundberg SM, Erion G, Chen H, et al. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat Mach Intell. 2020;2(1):56–67. doi:10.1038/s42256-019-0138-9
  • Ulvik A, Wentzel-Larsen T, Flaatten H. Trauma patients in the intensive care unit: short- and long-term survival and predictors of 30-day mortality. Acta Anaesthesiol Scand. 2007;51(2):171–177. doi:10.1111/j.1399-6576.2006.01207.x
  • Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G. Red blood cell distribution width: a simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci. 2015;52(2):86–105. doi:10.3109/10408363.2014.992064
  • Lippi G, Bovo C, Buonocore R, Mitaritonno M, Cervellin G. Red blood cell distribution width in patients with limb, chest and head trauma. Arch Med Sci. 2017;13(3):606–611. doi:10.5114/aoms.2017.67282
  • Kong T, Park JE, Park YS, et al. Usefulness of serial measurement of the red blood cell distribution width to predict 28-day mortality in patients with trauma. Am J Emerg Med. 2017;35(12):1819–1827. doi:10.1016/j.ajem.2017.06.008
  • Bochicchio GV, Bochicchio KM, Joshi M, Ilahi O, Scalea TM. Acute glucose elevation is highly predictive of infection and outcome in critically injured trauma patients. Ann Surg. 2010;252(4):597–602. doi:10.1097/SLA.0b013e3181f4e499
  • Falciglia M, Freyberg RW, Almenoff PL, D’Alessio DA, Render ML. Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis. Crit Care Med. 2009;37(12):3001–3009. doi:10.1097/CCM.0b013e3181b083f7
  • Marshall DC, Salciccioli JD, Goodson RJ, et al. The association between sodium fluctuations and mortality in surgical patients requiring intensive care. J Crit Care. 2017;40:63–68. doi:10.1016/j.jcrc.2017.02.012
  • Fadila M, Rajasurya V, Regunath H. Ventilator Weaning. Treasure Island (FL): StatPearls; 2023.
  • Investigators I-R, the A, New Zealand Intensive Care Society Clinical Trials G. Conservative Oxygen Therapy during Mechanical Ventilation in the ICU. N Engl J Med. 2020;382(11):989–998. doi:10.1056/NEJMoa1903297
  • Ahmed FS, Ali L, Joseph BA, Ikram A, Ul Mustafa R, Bukhari SAC. A statistically rigorous deep neural network approach to predict mortality in trauma patients admitted to the intensive care unit. J Trauma Acute Care Surg. 2020;89(4):736–742. doi:10.1097/TA.0000000000002888
  • Zhu Y, Zhang J, Wang G, et al. Machine Learning Prediction Models for Mechanically Ventilated Patients: analyses of the MIMIC-III Database. Front Med. 2021;8:662340. doi:10.3389/fmed.2021.662340
  • Zhao QY, Liu LP, Luo JC, et al. A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis. Front Med. 2020;7:637434. doi:10.3389/fmed.2020.637434
  • Mou Z, Godat LN, El-Kareh R, Berndtson AE, Doucet JJ, Costantini TW. Electronic health record machine learning model predicts trauma inpatient mortality in real time: a validation study. J Trauma Acute Care Surg. 2022;92(1):74–80. doi:10.1097/TA.0000000000003431
  • Lee KC, Hsu CC, Lin TC, Chiang HF, Horng GJ, Chen KT. Prediction of Prognosis in Patients with Trauma by Using Machine Learning. Medicina. 2022;58(10). doi:10.3390/medicina58101379
  • Wang R, Wang L, Zhang J, He M, Xu J. XGBoost Machine Learning Algorism Performed Better Than Regression Models in Predicting Mortality of Moderate-to-Severe Traumatic Brain Injury. World Neurosurg. 2022;163:e617–e622. doi:10.1016/j.wneu.2022.04.044
  • Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17(1):230. doi:10.1186/s12916-019-1466-7