154
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Generative and Discriminative Learning for Lung X-Ray Analysis Based on Probabilistic Component Analysis

ORCID Icon, , , &
Pages 4039-4051 | Received 21 Sep 2023, Accepted 23 Nov 2023, Published online: 13 Dec 2023

References

  • Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks, In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR. Org; 2017:pp. 1126–1135.
  • Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers, In: Proceedings of the fifth annual workshop on Computational learning theory, ACM; 1992. pp. 144–152.
  • Guan Q, Huang Y, Zhong Z, Zheng Z, Zheng L, Yang Y. Thorax Disease Classification with Attention Guided Convolutional Neural Network. Pattern Recognition Letters; 2019.
  • Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–507. doi:10.1126/science.1127647
  • Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Adv Neural Inform Process Sys. 2014;2:2672–2680.
  • Hoffer E, Ailon N. Deep metric learning using triplet network. In: International Workshop on Similarity-Based Pattern Recognition. Springer; 2015:84–92.
  • de Hoop B, De Boo DW, Gietema HA, et al. Computer-aided detection of lung cancer on chest radiographs: effect on observer performance. Radiology. 2010;257(2):532–540. doi:10.1148/radiol.10092437
  • Szegedy C, Wei L, Yangqing J, et al. Going deeper with convolutions in Proc. IEEE CVPR; 2016:1–9.
  • Sunnetci KM, Ulukaya S, Alkan A. Periodontal bone loss detection based on hybrid deep learning and machine learning models with a user-friendly application. Biomed Signal Process Control. 2022;77:103844. doi:10.1016/j.bspc.2022.103844
  • Zhang J, Xia Y, Xie Y, Fulham M, Feng D. Classification of medical images in the biomedical literature by jointly using deep and handcrafted visual features. IEEE J Biomed Health Infom. 2018;22(5):1521–1530. doi:10.1109/JBHI.2017.2775662
  • Zhang J, Xia Y, Cui H. Pulmonary nodule detection in medical images: a survey, Biomed. Signal Proces. 2018;43:138–147.
  • Zhang J, Xia Y, Cui H, Zhang Y. NODULe: combining constrained multi-scale log filters with densely dilated 3d deep convolutional neural network for pulmonary nodule detection. Neurocomputing. 2018;317:159–167. doi:10.1016/j.neucom.2018.08.022
  • Oquab M, Bottou L, Laptev I, Sivic J, “Learning and transferring mid-level image representations using convolutional neural networks”, in Proc. CVPR; 2014:1717–1724.
  • Jaakkola T, Haussler D. Exploiting generative models in discriminative classifiers. Adv Neural Inform Process Sys. 1999;1:487–493.
  • Kononen J, Bubendorf L, Kallionimeni A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4(7):844–847. doi:10.1038/nm0798-844
  • Lasserre J, Bishop C, Minka T. Principled hybrids of generative and discriminative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York; 2006.
  • Ng A, Jordan M. On discriminative vs generative classifiers: a comparison of logistic regression and naive Bayes. In: Advances in Neural Information Processing Systems; 2002.
  • Perina A, Cristani M, Castellani U, Murino V, Jojic N. Free energy score space. Adv Neural Inform Process Sys. 2009;2:22.
  • Perina A, Cristani M, Castellani U, Murino V, Jojic N, A hybrid generative/ discriminative classification framework based on free-energy terms. In: Proceedings of the International Conference on Computer Vision; 2009.
  • Rubinstein YD, Hastie T: Discriminative vs informative learning. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining. AAAI Press; 1997:49–53.
  • Tsuda K, Kawanabe M, R¨atsch G, Sonnenburg S, Muller KR. A new discriminative kernel from probabilistic models. Neural Computation. 2002;14(10):2397–2414. doi:10.1162/08997660260293274
  • Bosch A, Zisserman A, Mu˜noz X. Scene Classification via pLSA. Vol. 3954. Leonardis A, Bischof H, Pinz A, eds. Heidelberg: Springer; 2006:517–530. ECCV 2006. LNCS.
  • Hofmann T. Unsupervised learning by probabilistic latent semantic analysis. Machine Learn. 2001;42(1–2):177–196. doi:10.1023/A:1007617005950
  • Castellani U, Perina A, Murino V, Bellani M, Brambilla P: Brain morphometry by probabilistic latent semantic analysis. In: International Conference on Medical Image Computing and Computer Assisted Intervention; 2010.
  • Bicego M, Lovato P, Ferrarini A, Delledonne M. Biclustering of expression microarray data with topic models. In: Proceedings of the International Conference on Pattern Recognition. 2010:2728–2731.
  • Bicego M, Lovato P, Oliboni B, Perina A: Expression microarray classification using topic models. In: ACM Symposium on Applied Computing (Bioinformatics and Computational Biology track); 2010.
  • Martins A, Smith N, Xing E, Aguiar P, Figueiredo M. Nonextensive information theoretic kernels on measures. J Machine Learn Res. 2009;10:935–975.
  • Martins AFT, Bicego M, Murino V, Aguiar PMQ, Figueiredo MAT. Information Theoretical Kernels for Generative Embeddings Based on Hidden Markov Models. Vol. 6218. Hancock ER, Wilson RC, Windeatt T, Ulusoy I, Escolano F, eds. Heidelberg: Springer; 2010:463–472. SSPR&SPR 2010. LNCS.
  • Schuffler P, Ula¸s A, Castellani U, Murino V: A multiple kernel learning algorithm for cell nucleus classification of renal cell carcinoma. In: Proceedings of the 16th International Conference on Image Analysis and Processing; 2011.
  • Song Y, Cai W, Zhou Y, Feng DD. Feature-based image patch approximation for lung tissue classification. IEEE Transact Med Imaging. 2013;32(4):797–808. doi:10.1109/TMI.2013.2241448
  • Song Y, Cai W, Huang H, et al. Large margin local estimate with applications to medical image classification. IEEE Transact Med Imaging. 2015;34(6):1362–1377. doi:10.1109/TMI.2015.2393954
  • Li Q, Cai W, Feng DD. Lung image patch classification with automatic feature learning. EMBC. 2013;2013:6079–6082. doi:10.1109/EMBC.2013.6610939
  • Gao M, Bagci U, Lu L, et al. Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks”, in workshop on deep learning in medical image analysis; 2015.
  • Schlegl T, Waldstein SM, Vogl W-D, Schmidt-Erfurth U, Langs G. Predicting semantic descriptions from medical images with convolutional neural networks. IPMI. 2015;4:437–448.
  • Lo S-CB, Chan H-P, Lin J-S, Li H, Freedman MT, Mun SK. Artificial convolution neural network for medical image pattern recognition. Neural Networks. 1995;8(7–8):1201–1214. doi:10.1016/0893-6080(95)00061-5
  • Lo S-CB, A. lou S-L, Lin J-S, Freedman MT, Chien MV, Mun SK. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Transact Med Imaging. 1995;14(4):711–718. doi:10.1109/42.476112
  • Shen W, Zhou M, Yang F, Yang C, Tian J. Multi-scale convolutional neural networks for lung nodule classification in IPMI; 2015:588–599.
  • Kumar D, Wong A, Clausi DA. Lung nodule classification using deep features in CT images. Computer Robot Vision. 2015;4133–138.
  • Roth HR, Lu L, Seff A, et al., “A New 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations”, in MICCAI; 2014:520–527.
  • Kingma DP, Mohamed S, Jimenez Rezende D, Welling M. Semisupervised learning with deep generative models. Adv Neural Inform Process Sys. 2014;3:27.
  • Kumar A, Sattigeri P, Fletcher T. Semi-supervised learning with gans: manifold invariance with improved inference. Adv Neural Inform Process Sys. 2017;5:30.
  • Wu S, Deng G, Li J, Li R, Yu Z, Wong HS. Enhancing triplegan for semi-supervised conditional instance synthesis and classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019:10091–10100.
  • Liu M, Li F, Yan H, et al. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage. 2020;208:116459. doi:10.1016/j.neuroimage.2019.116459