401
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

A Systematic Literature Review of Mathematical Models for Coinfections: Tuberculosis, Malaria, and HIV/AIDS

, , ORCID Icon & ORCID Icon
Pages 1091-1109 | Received 31 Oct 2023, Accepted 19 Feb 2024, Published online: 13 Mar 2024

References

  • UNAIDS. Global HIV & AIDS statistics. SA Pharm J. 2010;77:57.
  • World Health Organization. Global Health Sector Strategy on HIV 2016-2021; 2016.
  • UNAIDS. Tuberculosis and AIDS: point of View; 1997.
  • World Health Organization. World Health Organization Strategic Framework to Decrease the Burden of TB/HIV Stop TB Department and Department of HIV/AIDS; 2002.
  • Zaman K. Tuberculosis: a global health problem. J Heal Popul Nutr. 2010;28:111–113.
  • Fouad RM, Laerte Rda SJJ, Carolina GFA, et al. Tuberculosis treatment. J Bras Pneumol. 2017;43(6):472–486. doi:10.1590/s1806-37562016000000388
  • Pontali E, D’Ambrosio L, Centis R, et al. Multidrug-resistant tuberculosis and beyond: an updated analysis of the current evidence on bedaquiline. Eur Respir J. 2017;2017:49.
  • Floyd K, Anderson L, Baddeley A, et al. Global tuberculosis report; 2018:1–277.
  • World Health Organization. Tuberculosis reports; 2020; 188.
  • Godfrey-Faussett P, Maher D, Mukadi YD, et al. How human immunodeficiency virus voluntary testing can contribute to tuberculosis control. IAPAC Mon. 2003;9(3):54–60.
  • World Health Organization. Global tuberculosis report 2023; 2023.
  • White NJN, Pukrittayakamee S, Hien TTT, Faiz MA, Mokuolu OAO, Dondorp AAM. Malaria. Lancet. 2014;383(9918):723–735. doi:10.1016/S0140-6736(13)60024-0
  • M.a P, Burrows JN, Manyando C, et al. Malaria. Nat Rev Dis Prim. 2017;2017:3.
  • League GP, Degner EC, Pitcher SA, et al. The impact of mating and sugar feeding on blood-feeding physiology and behavior in the arbovirus vector mosquito Aedes aegypti. PLoS Negl Trop Dis. 2021;15(9):1–29. doi:10.1371/journal.pntd.0009815
  • World Health Organization. World Malaria Report 2021; 2021.
  • World Health Organization. World Malaria Report 2023; 2023.
  • Chu CS, White NJ. The prevention and treatment of plasmodium vivax malaria. PLoS Med. 2021;18(4):1–21. doi:10.1371/journal.pmed.1003561
  • Childs LM, Abuelezam NN, Dye C, et al. Modelling challenges in context: lessons from malaria, HIV, and tuberculosis. Epidemics. 2015;10:102–107. doi:10.1016/j.epidem.2015.02.002
  • Pangestu DS, Tresna ST, Inayaturohmat F, et al. Covid-19 transmission model with discrete time approach. Commun Math Biol Neurosci. 2022;2022:1–12.
  • Inayaturohmat F, Anggriani N, Supriatna AK. A mathematical model of tuberculosis and COVID-19 coinfection with the effect of isolation and treatment. Front Appl Math Stat. 2022;2022:8.
  • Inayaturohmat F, Anggriani N, Supriatna AK. Optimal control and sensitivity analysis of Covid-19 transmission model with the presence of waning immunity in west java, Indonesia. commun. Math Biol Neurosci. 2022;2022:1–13.
  • Purwani S, Inayaturohmat F, Tresna ST. Covid-19 EPIDEMIC MODEL: STUDY OF NUMERICAL METHODS AND SOLVING OPTIMAL CONTROL PROBLEM THROUGH FORWARD-BACKWARD SWEEP METHOD. Commun Math Biol Neurosci. 2022;2022:1–19.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;2009:6.
  • Alzahrani AK, Khan MA. The Co-dynamics of malaria and tuberculosis with optimal control strategies. Filomat. 2022;36(6):1789–1818. doi:10.2298/FIL2206789A
  • Afolabi MA, Adewale SO. Sensitivity analysis on mathematical modeling of transmission dynamics of tuberculosis–malaria co-infections. Int J Math Trend Tech. 2021;67(12):21–40. doi:10.14445/22315373/IJMTT-V67I12P503
  • Barley K, Murillo D. A mathematical model of HIV and malaria co-infection in Sub-Saharan Africa. J AIDS Clin Res. 2012;S8:3. doi:10.4172/2155-6113
  • Seidu B, Makinde OD, Seini IY. Mathematical analysis of the effects of HIV-malaria co-infection on workplace productivity. Acta Bio. 2015;63(2):151–182. doi:10.1007/s10441-015-9255-y
  • Nyabadza F, Bekele BT, Rúa MA, et al. The Implications of HIV treatment on the HIV-malaria coinfection dynamics: a modeling perspective. Biomed Res Int. 2015;2015:1–14. doi:10.1155/2015/659651
  • Mohammed-Awel J, Numfor E. Optimal insecticide-treated bed-net coverage and malaria treatment in a malaria-HIV co-infection model. J Biol Dyn. 2017;11(sup1):160–191. doi:10.1080/17513758.2016.1192228
  • Windarto F, Hanif L. Application of optimal control strategies to HIV-malaria co-infection dynamics. J Phys Conf Ser. 2018;974:1–14.
  • Saha AK, Niger AM, Podder CN. Impact of treatment on HIV-malaria coinfection based on mathematical modeling. GANIT J Bangladesh. Math Soc. 2019;39:45–62. doi:10.3329/ganit.v39i0.44165
  • Oladapo AO, Olayiwola MO, Adedokun KA, et al. Mathematical analysis of sensitive parameters on the dynamical transmission of HIV-malaria co-infection. Jambura Journal of Biomathematics. 2023;4(1):37–45. doi:10.34312/jjbm.v4i1.18972
  • Massad E, Burattini MN, Coutinho FAB, et al. Modeling the interaction between aids and tuberculosis. Math Comput Model. 1993;17(9):7–21. doi:10.1016/0895-7177(93)90013-O
  • Naresh R, Sharma D, Tripathi A. Modelling the effect of tuberculosis on the spread of HIV infection in a population with density-dependent birth and death rate. Math Comput Model. 2009;50(7–8):1154–1166. doi:10.1016/j.mcm.2009.05.033
  • Bhunu CP, Garira W, Mukandavire Z. Modeling HIV/AIDS and Tuberculosis Coinfection. Bulletin of Mathematic Biology. 2009;71(7):1745–1780. doi:10.1007/s11538-009-9423-9
  • Gakkhar S, Chavda N. A dynamical model for HIV-TB co-infection. Appl Math Comput. 2012;218:9261–9270.
  • Agusto FB, Adekunle AI. Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model. BioSystems. 2014;119:20–44. doi:10.1016/j.biosystems.2014.03.006
  • Kaur N, Ghosh M, Bhatia SS. The role of screening and treatment in the transmission dynamics of HIV/AIDS and tuberculosis co-infection: a mathematical study. J Biol Phys. 2014;40(2):139–166. doi:10.1007/s10867-014-9342-3
  • Adewale SO, Olopade IA, Adeniran GA, et al. Mathematical modelling and sensitivity analysis of HIV-TB co-infection. J Advance in Mathematics. 2015;1111.
  • Bunwong K, Sae-Jie W, Boonsri N. A modeling approach for assessing the spread of tuberculosis and human immunodeficiency virus co-infections in Thailand. Kasetsart J Nat Sci. 2015;49:990–1000.
  • Kaur N, Ghosh M, Bhatia SS. HIV-TB co-infection: a simple mathematical model. Journal of Advanced Research in Dynamical and Control Systems. 2015;7:66–81.
  • Nthiiri JK, Lawi GO, Manyonge A. Mathematical modelling of tuberculosis as an opportunistic respiratory Co-Infection in HIV/AIDS in the presence of protection. Applied Mathematical Sci. 2015;9(5215):–. doi:10.12988/ams.2015.54365
  • Mallela A, Lenhart S, Vaidya NK. HIV–TB co-infection treatment: modeling and optimal control theory perspectives. J Comput Appl Math. 2016;307:143–161. doi:10.1016/j.cam.2016.02.051
  • Olopade IA, Adewale SO, Mohammed IT, Ajao SO, Oyedemi OT. Mathematical analysis of the role of detection rate in the dynamical spread of HIV-TB co-infection. J Adv Math. 2016;11:10.
  • Bolarin G, Omatola U, Aiyesimi Y. Semi-analytic solution of HIV and TB co-infection model. J Appl Sci Environ. Manage. 2017;26:203–208.
  • Awoke TD, Kassa SM. Optimal control strategy for TB-HIV/AIDS Co-infection model in the presence of behaviour modification. Processes. 2018;6(5):1–25. doi:10.3390/pr6050048
  • Muthuri GG, Malonza DM. Mathematical modeling of TB - HIV co infection, case study of tigania west sub county, Kenya. J Adv Math Com Sci. 2018;27(5):1–18. doi:10.9734/JAMCS/2018/41850
  • Tahir M, Shah SIA, Zaman G. Prevention strategy for superinfection mathematical model tuberculosis and HIV associated with AIDS. Cogent Math. 2019;6(1):1637166. doi:10.1080/25742558.2019.1637166
  • Tanvi AR, Aggarwal R. Stability analysis of a delayed HIV-TB co-infection model in resource limitation settings. Chaos, Solitons and Fractals. 2020;140(140):110138. doi:10.1016/j.chaos.2020.110138
  • Tanvi AR, Aggarwal R. Dynamics of HIV-TB co-infection with detection as optimal intervention strategy. Int J Non Linear Mech. 2020b;120:103388. doi:10.1016/j.ijnonlinmec.2019.103388
  • Tanvi AR. Estimating the impact of antiretroviral therapy on HIV-TB co-infection: optimal strategy prediction. Int J of Biomathematics. 2020c;14:1.
  • Omale AJ, Bolaji B. Mathematical model for transmission dynamics of HIV and tuberculosis co-infection in Kogi State, Nigeria. J Math Comput Sci. 2021;11:5580–5613.
  • Biswas MHA, Samad SA, Parvin T, et al. Optimal control strategy to reduce the infection of pandemic HIV associated with tuberculosis. Commun Biomath Sci. 2022;5(1):20–39. doi:10.5614/cbms.2022.5.1.2
  • Pitchaimani M, Devi AS. Threshold dynamics of an HIV-TB co-infection model with multiple time delays. Tamkang Journal of Mathematics. 2022;53:201–228.
  • Adeyomo S, Sangotola A, Korosteleva O. Modeling transmission dynamics of tuberculosis–HIV co-infection in South Africa. Epidemiologia. 2023;4(4):408–419. doi:10.3390/epidemiologia4040036
  • Teklu SW, Abebaw YF, Terefe BB, Mamo DK. HIV/AIDS and TB co-infection deterministic model bifurcation and optimal control analysis. Informatics in Medicine Unlocked. 2023;41:101328. doi:10.1016/j.imu.2023.101328
  • Torres M, Tubay J, Reyes ADL. Quantitative assessment of a dual epidemic caused by tuberculosis and HIV in the Philippines. Bulletin of Mathematical Biology. 2023;85(7):56. doi:10.1007/s11538-023-01156-1
  • Singh A, Jain M, Sharma GC. Stability and numerical analysis of malaria- mTB- HIV/AIDS co-infection. Int J Eng Trans a Basics. 2013;26:729–742.