101
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Night Screen Time is Associated with Cognitive Function in Healthy Young Adults: A Cross-Sectional Study

ORCID Icon, , &
Pages 2093-2104 | Received 01 Feb 2024, Accepted 29 Apr 2024, Published online: 05 May 2024

References

  • Neophytou E, Manwell LA, Eikelboom R. Effects of excessive screen time on neurodevelopment, learning, memory, mental health, and neurodegeneration: a scoping review. Int J Ment Health Addict. 2021;19(3):724–744. doi:10.1007/s11469-019-00182-2
  • Eric O. The negative effects of new screens on the cognitive functions of young children require new recommendations. Ital J Pediatr. 2021;47(1):1–6. doi:10.1186/s13052-021-01174-6
  • Zhang Z, Adamo KB, Ogden N, et al. Associations between screen time and cognitive development in preschoolers. Paediatr Child Health. 2022;27(2):105–110. doi:10.1093/pch/pxab067
  • Kim M, Park JM. Factors affecting cognitive function according to gender in community-dwelling elderly individuals. Epidemiol Health. 2017;39.
  • Hsu HC, Bai CH. Individual and environmental factors associated with cognitive function in older people: a longitudinal multilevel analysis. BMC Geriatr. 2022;22(1):243. doi:10.1186/s12877-022-02940-9
  • Kim R, Chung W. Effect of Aging on Educational Differences in the Risk of Cognitive Impairment: a Gender-Specific Analysis Using Korean Longitudinal Study of Aging (2006–2016). Healthcare. 2022;10(6):1062. doi:10.3390/healthcare10061062
  • Foster DW, Zvolensky MJ, Garey L, Ditre JW, Schmidt NB. Relationships between drinking motives and smoking expectancies among daily smokers who are also problem drinkers. J Dual Diagn. 2014;10(3):118–129. doi:10.1080/15504263.2014.926759
  • Huang FF, Wen ZP, Li Q, Chen B, Weng WJ. Factors influencing cognitive reactivity among young adults at high risk for depression in China: a cross-sectional study. BMC Public Health. 2020;20(1):1–10. doi:10.1186/s12889-020-08845-9
  • You Y, Liu J, Wang D, Fu Y, Liu R, Ma X. Cognitive performance in short sleep young adults with different physical activity levels: a cross-sectional fNIRS study. Brain Sci. 2023;13(2):171. doi:10.3390/brainsci13020171
  • Kim S, Kim Y, Park SM. Body mass index and decline of cognitive function. PLoS One. 2016;11(2).
  • Ragupathi D, Ibrahim N, Tan KA, Andrew BN. Relations of bedtime mobile phone use to cognitive functioning, academic performance, and sleep quality in undergraduate students. Int J Environ Res Public Health. 2020;17(19):7131. doi:10.3390/ijerph17197131
  • Carvalho LF, Sette CP, Ferrari BL. Problematic smartphone use relationship with pathological personality traits: systematic review and meta-analysis. Cyberpsychology. 2018;12(3). doi:10.5817/CP2018-3-5
  • Gupta GK. Ubiquitous mobile phones are becoming indispensable. ACM Inroads. 2011;2(2):32–33. doi:10.1145/1963533.1963545
  • Lemola S, Perkinson-Gloor N, Brand S, Dewald-Kaufmann JF, Grob A. Adolescents’ electronic media use at night, sleep disturbance, and depressive symptoms in the smartphone age. J Youth Adolesc. 2015;44(2):405–418. doi:10.1007/s10964-014-0176-x
  • Manwell LA, Tadros M, Ciccarelli TM, Eikelboom R. Digital dementia in the internet generation: excessive screen time during brain development will increase the risk of Alzheimer’s disease and related dementias in adulthood. J Integr Neurosci. 2022;21(1):28. doi:10.31083/j.jin2101028
  • Gamble AL, D’Rozario AL, Bartlett DJ, et al. Adolescent sleep patterns and night-time technology use: results of the Australian Broadcasting Corporation’s Big Sleep Survey. PLoS One. 2014;9(11):e111700. doi:10.1371/journal.pone.0111700
  • Hysing M, Pallesen S, Stormark KM, Jakobsen R, Lundervold AJ, Sivertsen B. Sleep and use of electronic devices in adolescence: results from a large population-based study. BMJ Open. 2015;5(1):e006748–e006748. doi:10.1136/bmjopen-2014-006748
  • Wilmer HH, Sherman LE, Chein JM. Smartphones and cognition: a review of research exploring the links between mobile technology habits and cognitive functioning. Front Psychol. 2017;8:605. doi:10.3389/fpsyg.2017.00605
  • Quinn K. Cognitive effects of social media use: a case of older adults. Soc Media Soc. 2018;4(3):2056305118787203.
  • Jeong HN, Chang SJ, Kim S. Associations with smartphone usage and life satisfaction among older adults: mediating roles of depressive symptoms and cognitive function. Geriatr Nurs. 2024;55:168–175. doi:10.1016/j.gerinurse.2023.11.013
  • Sina E, Buck C, Ahrens W, et al. Digital media exposure and cognitive functioning in European children and adolescents of the I Family study. Sci Rep. 2023;13(1):18855. doi:10.1038/s41598-023-45944-0
  • Poujol MC, Pinar-Martí A, Persavento C, Delgado A, Lopez-Vicente M, Julvez J. Impact of Mobile Phone Screen Exposure on Adolescents’ Cognitive Health. Int J Environ Res Public Health. 2022;19(19):12070. doi:10.3390/ijerph191912070
  • Walsh JJ, Barnes JD, Tremblay MS, Chaput JP. Associations between duration and type of electronic screen use and cognition in US children. Comput Human Behav. 2020;108:106312. doi:10.1016/j.chb.2020.106312
  • Schoeni A, Roser K, Röösli M. Symptoms and cognitive functions in adolescents in relation to mobile phone use during night. PLoS One. 2015;10(7):e0133528. doi:10.1371/journal.pone.0133528
  • Lissak G. Adverse physiological and psychological effects of screen time on children and adolescents: literature review and case study. Environ Res. 2018;164:149–157. doi:10.1016/j.envres.2018.01.015
  • Anderson CA, Bushman BJ, Bartholow BD, et al. Screen violence and youth behavior. Pediatrics. 2017;140(Supplement_2):S142–S147. doi:10.1542/peds.2016-1758T
  • Trott M, Driscoll R, Iraldo E, Pardhan S. Changes and correlates of screen time in adults and children during the COVID-19 pandemic: a systematic review and meta-analysis. EClinicalMedicine. 2022;48.
  • Vizcaino M, Buman M, DesRoches CT, Wharton C. Reliability of a new measure to assess modern screen time in adults. BMC Public Health. 2019;19(1):1–8. doi:10.1186/s12889-019-7745-6
  • Gronwall DMA. Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills. 1977;44(2):367–373. doi:10.2466/pms.1977.44.2.367
  • Sherman EMS, Strauss E, Spellacy F. Validity of the Paced Auditory Serial Addition Test (PASAT) in adults referred for neuropsychological assessment after head injury. Clin Neuropsychol. 1997;11(1):34–45. doi:10.1080/13854049708407027
  • Woods SP, Scott JC, Sires DA, et al. Action (verb) fluency: test–retest reliability, normative standards, and construct validity. J Int Neuropsychol Soc. 2005;11(4):408–415. doi:10.1017/S1355617705050460
  • Nikravesh M, Jafari Z, Mehrpour M, et al. The paced auditory serial addition test for working memory assessment: psychometric properties. Med J Islam Repub Iran. 2017;31(1):61. doi:10.14196/mjiri.31.61
  • Tombaugh TN. A comprehensive review of the paced auditory serial addition test (PASAT). Arch Clin Neuropsychol. 2006;21(1):53–76. doi:10.1016/j.acn.2005.07.006
  • Rabbitt P, Donlan C, Watson P, McInnes L, Bent N. Unique and interactive effects of depression, age, socioeconomic advantage, and gender on cognitive performance of normal healthy older people. Psychol Aging. 1995;10(3):307. doi:10.1037/0882-7974.10.3.307
  • Vafa S, Ong JZ, Yong MH, et al. Online cognitive testing with Asian older adults during the Covid-19 pandemic: a proof-of-feasibility study. Int J Med. 2023.
  • Pedraza OL, Salazar AM, Sierra FA, et al. Reliability, criterion and discriminant validity of the Montreal Cognitive Assessment Test (MoCA) in a group of adults from Bogotá. Acta Medica Colombiana. 2016;41(4):221–228.
  • Bruijnen CJWH, Dijkstra BAG, Walvoort SJW, et al. Psychometric properties of the Montreal Cognitive Assessment (MoCA) in healthy participants aged 18–70. Int J Psychiatry Clin Pract. 2020;24(3):293–300. doi:10.1080/13651501.2020.1746348
  • Julayanont P, Nasreddine ZS. Montreal Cognitive Assessment (MoCA): concept and clinical review. Cognitive Screening Instruments. 2017;139–195.
  • Strober LB, Bruce JM, Arnett PA, et al. A new look at an old test: normative data of the symbol digit modalities test–Oral version. Mult Scler Relat Disord. 2020;43:102154. doi:10.1016/j.msard.2020.102154
  • Goetz CG. Textbook of Clinical Neurology. Vol. 355. Elsevier Health Sciences; 2007.
  • Fu J, Xu P, Zhao L, Yu G. Impaired orienting in youth with internet addiction: evidence from the attention network task (ANT). Psychiatry Res. 2018;264:54–57. doi:10.1016/j.psychres.2017.11.071
  • Hadar A, Hadas I, Lazarovits A, Alyagon U, Eliraz D, Zangen A. Answering the missed call: initial exploration of cognitive and electrophysiological changes associated with smartphone use and abuse. PLoS One. 2017;12(7):e0180094. doi:10.1371/journal.pone.0180094
  • Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. Journal of Speech, Language, and Hearing Research. 2008;51(1). doi:10.1044/1092-4388(2008/018)
  • Cristofori I, Cohen-Zimerman S, Grafman J. Executive functions. Handb Clin Neurol. 2019;163:197–219.
  • Magistro D, Takeuchi H, Nejad KK, et al. The relationship between processing speed and regional white matter volume in healthy young people. PLoS One. 2015;10(9):e0136386. doi:10.1371/journal.pone.0136386
  • Xiang H, Lin L, Chen W, et al. Associations of excessive screen time and early screen exposure with health-related quality of life and behavioral problems among children attending preschools. BMC Public Health. 2022;22(1):1–12. doi:10.1186/s12889-022-14910-2
  • Vance DE, Roberson AJ, McGuinness TM, Fazeli PL. How Neuroplasticity and Cognitive Reserve: protect Cognitive Functioning. J Psychosoc Nurs Ment Health Serv. 2010;48(4):23–30. doi:10.3928/02793695-20100302-01
  • de Araújo LGM, Turi BC, Locci B, Mesquita CAA, Fonsati NB, Monteiro HL. Patterns of physical activity and screen time among Brazilian children. J Phys Act Health. 2018;15(6):457–461. doi:10.1123/jpah.2016-0676
  • Dahlgren A, Sjöblom L, Eke H, Bonn SE, Trolle Lagerros Y. Screen time and physical activity in children and adolescents aged 10–15 years. PLoS One. 2021;16(7):e0254255. doi:10.1371/journal.pone.0254255
  • Trott M, Driscoll R, Pardhan S. The prevalence of sensory changes in post-COVID syndrome: a systematic review and meta-analysis. Front Med Lausanne. 2022;9:980253. doi:10.3389/fmed.2022.980253
  • Alves JM, Yunker AG, DeFendis A, Xiang AH, Page KA. BMI status and associations between affect, physical activity and anxiety among US children during COVID‐19. Pediatr Obes. 2021;16(9):e12786. doi:10.1111/ijpo.12786
  • Hoang TD, Reis J, Zhu N, et al. Effect of early adult patterns of physical activity and television viewing on midlife cognitive function. JAMA Psychiatry. 2016;73(1):73–79. doi:10.1001/jamapsychiatry.2015.2468
  • Schmidt ME, Vandewater EA. Media and attention, cognition, and school achievement. Future Child. 2008;18(1):63–85. doi:10.1353/foc.0.0004
  • Ennemoser M, Schneider W. Relations of television viewing and reading: findings from a 4-year longitudinal study. J Educ Psychol. 2007;99(2):349. doi:10.1037/0022-0663.99.2.349
  • Lim J, Dinges DF. Sleep deprivation and vigilant attention. Ann N Y Acad Sci. 2008;1129(1):305–322. doi:10.1196/annals.1417.002
  • Beebe DW, Rose D, Amin R. Attention, learning, and arousal of experimentally sleep-restricted adolescents in a simulated classroom. J Adolesc Health. 2010;47(5):523–525. doi:10.1016/j.jadohealth.2010.03.005
  • Choo WC, Lee WW, Venkatraman V, Sheu FS, Chee MWL. Dissociation of cortical regions modulated by both working memory load and sleep deprivation and by sleep deprivation alone. Neuroimage. 2005;25(2):579–587. doi:10.1016/j.neuroimage.2004.11.029
  • Chee MWL, Chuah LYM, Venkatraman V, Chan WY, Philip P, Dinges DF. Functional imaging of working memory following normal sleep and after 24 and 35 h of sleep deprivation: correlations of fronto-parietal activation with performance. Neuroimage. 2006;31(1):419–428. doi:10.1016/j.neuroimage.2005.12.001
  • Hobson JA, Pace-Schott EF. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev Neurosci. 2002;3(9):679–693. doi:10.1038/nrn915
  • Gildner TE, Liebert MA, Kowal P, Chatterji S, Snodgrass JJ. Associations between sleep duration, sleep quality, and cognitive test performance among older adults from six middle income countries: results from the Study on Global Ageing and Adult Health (SAGE). J Clin Sleep Med. 2014;10(6):613–621. doi:10.5664/jcsm.3782
  • Lövdén M, Fratiglioni L, Glymour MM, Lindenberger U, Tucker-Drob EM. Education and cognitive functioning across the life span. Psychol Sci Public Interes. 2020;21(1):6–41. doi:10.1177/1529100620920576
  • Kiely KM, Butterworth P, Watson N, Wooden M. The Symbol Digit Modalities Test: normative data from a large nationally representative sample of Australians. Arch Clin Neuropsychol. 2014;29(8):767–775. doi:10.1093/arclin/acu055
  • Abelson RP. A variance explanation paradox: when a little is a lot. Psychol Bull. 1985;97(1):129. doi:10.1037/0033-2909.97.1.129
  • Rosenthal R. How are we doing in soft psychology? Am Psychologist. 1990;45(6):775. doi:10.1037/0003-066X.45.6.775
  • Swing EL, Gentile DA, Anderson CA, Walsh DA. Television and video game exposure and the development of attention problems. Pediatrics. 2010;126(2):214–221. doi:10.1542/peds.2009-1508