32
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Global Trends in Orthopedic Biofilm Research: A Bibliometric Analysis of 1994-2022

, , &
Pages 3057-3069 | Received 23 Feb 2024, Accepted 15 Jun 2024, Published online: 02 Jul 2024

References

  • Lopez CD, Boddapati V, Lombardi JM, et al. Recent trends in medicare utilization and reimbursement for lumbar spine fusion and discectomy procedures. Spine j. 2020;20(10):1586–1594. doi:10.1016/j.spinee.2020.05.558
  • Feng X, Gu J, Zhou Y. Primary total Hip arthroplasty failure: aseptic loosening remains the most common cause of revision. Am J Transl Res. 2022;14(10):7080–7089.
  • Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2(4):176–194. doi:10.4161/biom.22905
  • Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: Extracellular components in structured microbial communities. Trends in Microbiology. 2020;28(8):668–681. doi:10.1016/j.tim.2020.03.016
  • Bircher L, Schwab C, Geirnaert A, Greppi A, Lacroix C, Wilmes P. Planktonic and sessile artificial colonic microbiota harbor distinct composition and reestablish differently upon frozen and freeze-dried long-term storage. mSystems. 2020;5(1):e00521–00519. doi:10.1128/mSystems.00521-19
  • Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics. 2020;9(2). doi:10.3390/antibiotics9020059
  • Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067. doi:10.1016/j.heliyon.2018.e01067
  • Wang T, Zhang R, Chen Z, Cao P, Zhou Q, Wu Q. A global bibliometric and visualized analysis of bacterial biofilm eradication from 2012 to 2022. Front Microbiol. 2023;14:1287964. doi:10.3389/fmicb.2023.1287964
  • Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: an overview and guidelines. J busi rese. 2021;133:285–296. doi:10.1016/j.jbusres.2021.04.070
  • Li P, Tong X, Wang T, et al. Biofilms in wound healing: a bibliometric and visualised study. Int Wound J. 2023;20(2):313–327. doi:10.1111/iwj.13878
  • Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Bibliometric analysis and thematic review of Candida pathogenesis: fundamental omics to applications as potential antifungal drugs and vaccines. Med Mycol. 2024;62(1). doi:10.1093/mmy/myad126
  • Aria M, Cuccurullo C. bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetrics. 2017;11(4):959–975. doi:10.1016/j.joi.2017.08.007
  • Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F. An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the Fuzzy Sets Theory field. J Informetrics. 2011;5(1):146–166. doi:10.1016/j.joi.2010.10.002
  • Darouiche RO, Dhir A, Miller AJ, Landon GC, Raad M II, Musher DM. Vancomycin penetration into biofilm covering infected prostheses and effect on bacteria. J Infect Dis. 1994;170(3):720–723. doi:10.1093/infdis/170.3.720
  • Trampuz A, Piper KE, Jacobson MJ, et al. Sonication of removed Hip and knee prostheses for diagnosis of infection. New Engl J Med. 2007;357(7):654–663. doi:10.1056/NEJMoa061588
  • Puckett SD, Taylor E, Raimondo T, Webster TJ. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31(4):706–713. doi:10.1016/j.biomaterials.2009.09.081
  • Tunney MM, Patrick S, Curran MD, et al. Detection of prosthetic Hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. J Clin Microbiol. 1999;37(10):3281–3290. doi:10.1128/JCM.37.10.3281-3290.1999
  • Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. New Engl J Med. 2004;351(16):1645–1654. doi:10.1056/NEJMra040181
  • Cerioli M, Batailler C, Conrad A, et al. Pseudomonas aeruginosa implant-associated bone and joint infections: Experience in a regional reference center in France. Front Med. 2020;7:513242. doi:10.3389/fmed.2020.513242
  • Kherabi Y, Zeller V, Kerroumi Y, et al. Streptococcal and Staphylococcus aureus prosthetic joint infections: are they really different? BMC Infect Dis. 2022;22(1):555. doi:10.1186/s12879-022-07532-x
  • Benito N, Mur I, Ribera A, et al. The different microbial etiology of prosthetic joint infections according to route of acquisition and time after prosthesis implantation, including the role of multidrug-resistant organisms. J Clin Med. 2019;8(5):673. doi:10.3390/jcm8050673
  • Saltiel G, Meyssonnier V, Kerroumi Y, et al. Cutibacterium acnes prosthetic joint infections: Is rifampicin-combination therapy beneficial? Antibiotics. 2022;11(12):1801. doi:10.3390/antibiotics11121801
  • Zoubos AB, Galanakos SP, Soucacos PN. Orthopedics and biofilm--what do we know? A review. Med scie mon. 2012;18(6):Ra89–96. doi:10.12659/MSM.882893
  • Zimmerli W, Sendi P. Role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and in orthopedic-device-related infections. Antimicrob Agents Chemother. 2019;63(2). doi:10.1128/AAC.01746-18
  • LaPlante KL, Woodmansee S. Activities of daptomycin and vancomycin alone and in combination with rifampin and gentamicin against biofilm-forming methicillin-resistant staphylococcus aureus isolates in an experimental model of endocarditis. Antimicrob Agents Chemother. 2009;53(9):3880–3886. doi:10.1128/AAC.00134-09
  • Bistolfi A, Massazza G, Verné E, et al. Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthopedics. 2011;2011:290851.
  • Bürger J, Akgün D, Strube P, Putzier M, Pumberger M. Sonication of removed implants improves microbiological diagnosis of postoperative spinal infections. European Spine j. 2019;28(4):768–774. doi:10.1007/s00586-019-05881-x
  • Pumberger M, Bürger J, Strube P, Akgün D, Putzier M. Unexpected positive cultures in presumed aseptic revision spine surgery using sonication. Bone & Joint j. 2019;101.
  • Erivan R, Villatte G, Eymond G, Mulliez A, Descamps S, Boisgard S. Usefulness of sonication for diagnosing infection in explanted orthopaedic implants. Orthop Traumatol Surg Res. 2018;104(4):433–438.
  • Portillo ME, Salvadó M, Trampuz A, et al. Improved diagnosis of orthopedic implant-associated infection by inoculation of sonication fluid into blood culture bottles. J Clin Microbiol. 2015;53(5):1622–1627. doi:10.1128/JCM.03683-14
  • Hu Z. Establishment of a checklist for the identification of patients with postoperative spinal implant infections [dissertation]. Charité: Universitätsmedizin Berlin; 2022.
  • Navarro M, Michiardi A, Castaño O, Planell JA. Biomaterials in orthopaedics. J Royal Soc Interface. 2008;5(27):1137–1158. doi:10.1098/rsif.2008.0151
  • Orapiriyakul W, Young PS, Damiati L, Tsimbouri PM. Antibacterial surface modification of titanium implants in orthopaedics. J Tissue Eng. 2018;9:2041731418789838. doi:10.1177/2041731418789838
  • Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK. Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng H. 2014;228(10):1083–1099. doi:10.1177/0954411914556137
  • Li Y, Yang Y, Li R, et al. Enhanced antibacterial properties of orthopedic implants by titanium nanotube surface modification: a review of current techniques. Int j Nanomed. 2019;14:7217–7236. doi:10.2147/IJN.S216175
  • Wang N, Ma Y, Shi H, Song Y, Guo S. Mg-, Zn-, and Fe-based alloys with antibacterial properties as orthopedic implant Materials. Front Bioeng Biotechnol. 2022;10:888084. doi:10.3389/fbioe.2022.888084
  • Quinn J, McFadden R, Chan C-W, Carson L. Titanium for Orthopedic Applications: An overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation. iScience. 2020;23(11):101745. doi:10.1016/j.isci.2020.101745
  • Sarfraz S, Mäntynen PH, Laurila M, et al. Effect of surface tooling techniques of medical titanium implants on bacterial biofilm formation in vitro. Materials. 2022;15(9). doi:10.3390/ma15093228
  • Di Salle A, Spagnuolo G, Conte R, Procino A, Peluso G, Rengo C. Effects of various prophylactic procedures on titanium surfaces and biofilm formation. J Period Implant Sci. 2018;48(6):373–382. doi:10.5051/jpis.2018.48.6.373
  • Zaugg LK, Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Waltimo T, Zitzmann NU. Determinants of biofilm formation and cleanability of titanium surfaces. Clin Oral Implants Res. 2017;28(4):469–475. doi:10.1111/clr.12821
  • Lee SW, Phillips KS, Gu H, Kazemzadeh-Narbat M, Ren D. How microbes read the map: effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials. 2021;268:120595. doi:10.1016/j.biomaterials.2020.120595
  • Radha B, Lim SH, Saifullah MSM, Kulkarni GU. Metal hierarchical patterning by direct nanoimprint lithography. Sci Rep. 2013;3(1):1078. doi:10.1038/srep01078
  • Alameda MT, Osorio MR, Hernández JJ, Rodríguez I. Multilevel hierarchical topographies by combined photolithography and nanoimprinting processes to create surfaces with controlled wetting. ACS Appl Nano Mater. 2019;2(8):4727–4733. doi:10.1021/acsanm.9b00338
  • Francone A, Merino S, Retolaza A, et al. Impact of surface topography on the bacterial attachment to micro- and nano-patterned polymer films. Surf Interfaces. 2021;27:101494. doi:10.1016/j.surfin.2021.101494
  • Akshaya S, Rowlo PK, Dukle A, Nathanael AJ. Antibacterial Coatings for titanium implants: recent trends and future perspectives. Antibiotics. 2022;11(12). doi:10.3390/antibiotics11121719
  • Tomić SL, Vuković JS. Antimicrobial Activity of Silver, Copper, and Zinc Ions/Poly(Acrylate/Itaconic Acid) Hydrogel Matrices. Inorganics. 2022;10(3):38. doi:10.3390/inorganics10030038
  • Li T, Fu L, Wang J, Shi Z. High dose of vancomycin plus gentamicin incorporated acrylic bone cement decreased the elution of vancomycin. Infect Drug Resist. 2019;12:2191–2199. doi:10.2147/IDR.S203740
  • Wang L, Lu S, Luo W, et al. Efficacy comparison of antibiotic bone cement–coated implants and external fixations for treating infected bone defects. Inter Orthopaedics. 2023;47(5):1171–1179. doi:10.1007/s00264-023-05727-8
  • Bertazzoni Minelli E, Caveiari C, Benini A. Release of antibiotics from polymethylmethacrylate cement. J Chemotherap. 2002;14(5):492–500. doi:10.1179/joc.2002.14.5.492
  • Duey RE, Chong AC, McQueen DA, et al. Mechanical properties and elution characteristics of polymethylmethacrylate bone cement impregnated with antibiotics for various surface area and volume constructs. Iowa Orthopaedic j. 2012;32:104–115.
  • Dunne NJ, Hill J, McAfee P, Kirkpatrick R, Patrick S, Tunney M. Incorporation of large amounts of gentamicin sulphate into acrylic bone cement: effect on handling and mechanical properties, antibiotic release, and biofilm formation. Proc Inst Mech Eng H. 2008;222(3):355–365. doi:10.1243/09544119JEIM355
  • Ince A, Schütze N, Karl N, Löhr JF, Eulert J. Gentamicin negatively influenced osteogenic function in vitro. Int Orthop. 2007;31(2):223–228. doi:10.1007/s00264-006-0144-5
  • Mirzaei R, Campoccia D, Ravaioli S, Arciola CR. Emerging issues and initial insights into bacterial biofilms: from orthopedic infection to metabolomics. Antibiotics. 2024;13(2). doi:10.3390/antibiotics13020184
  • Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 2021;10(10):1310. doi:10.3390/pathogens10101310
  • Cangui-Panchi SP, Ñacato-Toapanta AL, Enríquez-Martínez LJ, et al. Battle royale: immune response on biofilms - host-pathogen interactions. Current Res Immun. 2023;4:100057. doi:10.1016/j.crimmu.2023.100057
  • Mosselhy DA, Assad M, Sironen T, Elbahri M. Nanotheranostics: a Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms? Nanomaterials. 2021;11(1):82.
  • Shen Z, Pan Y, Yan D, Wang D, Tang BZ. AIEgen-Based nanomaterials for bacterial imaging and antimicrobial applications: recent advances and perspectives. Molecules. 2023;28(6):2863. doi:10.3390/molecules28062863