38
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Nexus Between Sarcopenia and Microbiome Research: A Bibliometric Exploration

, , , &
Pages 3011-3025 | Received 20 Mar 2024, Accepted 15 Jun 2024, Published online: 24 Jun 2024

References

  • Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi:10.1093/ageing/afy169
  • Chen LK, Woo J, Assantachai P, et al. Asian working group for sarcopenia: 2019 Consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21:300–307 e302. doi:10.1016/j.jamda.2019.12.012
  • Chen Z, Li WY, Ho M, et al. The prevalence of sarcopenia in Chinese older adults: Meta-analysis and meta-regression. Nutrients. 2021;14:13. doi:10.3390/nu14010013
  • Bian AL, Hu HY, Rong YD, et al. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur J Med Res. 2017;22:25. doi:10.1186/s40001-017-0266-9
  • Wang Y, Zhang Y, Lane NE, et al. Population-based metagenomics analysis reveals altered gut microbiome in sarcopenia: Data from the Xiangya Sarcopenia Study. J Cachexia, Sarcopenia Muscle. 2022;13:2340–2351. doi:10.1002/jcsm.13037
  • Liu C, Cheung WH, Li J, et al. Understanding the gut microbiota and sarcopenia: A systematic review. J Cachexia, Sarcopenia Muscle. 2021;12:1393–1407. doi:10.1002/jcsm.12784
  • Aleman FDD, Valenzano DR. Microbiome evolution during host aging. PLoS Pathog. 2019;15:e1007727.
  • Weinstock GM. Genomic approaches to studying the human microbiota. Nature. 2012;489:250–256. doi:10.1038/nature11553
  • Chew W, Lim YP, Lim WS, et al. Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Front Med. 2023; 9. doi:10.3389/fmed.2022.1065365
  • Butteiger DN, Hibberd AA, McGraw NJ, et al. Soy protein compared with milk protein in a western diet increases gut microbial diversity and reduces serum lipids in golden Syrian hamsters. J Nutr. 2016;146:697–705. doi:10.3945/jn.115.224196
  • Kang L, Li P, Wang D, et al. Alterations in intestinal microbiota diversity, composition, and function in patients with sarcopenia. Sci Rep. 2021;11:4628. doi:10.1038/s41598-021-84031-0
  • Han DS, Wu WK, Liu PY, et al. Differences in the gut microbiome and reduced fecal butyrate in elders with low skeletal muscle mass. Clin Nutr. 2022;41:1491–1500. doi:10.1016/j.clnu.2022.05.008
  • Zhang Y, Zhu Y, Guo Q, et al. High-throughput sequencing analysis of the characteristics of the gut microbiota in aged patients with sarcopenia. Exp Gerontol. 2023;182:112287. doi:10.1016/j.exger.2023.112287
  • Wang Z, Xu X, Deji Y, et al. Bifidobacterium as a potential biomarker of sarcopenia in elderly women. Nutrients. 2023;16:15. doi:10.3390/nu16010015
  • Lustgarten MS, Fielding RA. Metabolites related to renal function, immune activation, and carbamylation are associated with muscle composition in older adults. Exp Gerontol. 2017;100:1–10. doi:10.1016/j.exger.2017.10.003
  • Sato E, Mori T, Mishima E, et al. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci Rep. 2016;6:6. doi:10.1038/s41598-016-0015-2
  • Aliwa B, Horvath A, Traub J, et al. Altered gut microbiome, bile acid composition and metabolome in sarcopenia in liver cirrhosis. J Cachexia Sarcopenia Mus. 2023;14:2676–2691. doi:10.1002/jcsm.13342
  • Mancin L, Wu GD, Paoli A. Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol. 2022;31:254–269. doi:10.1016/j.tim.2022.10.003
  • De Spiegeleer A, Wynendaele E, Descamps A, et al. The bacterial quorum sensing peptide iAM373 is a novel inducer of sarcopenia. Clin Transl Med. 2022;12:e1053.
  • Qin YF, Ren SH, Shao B, et al. The intellectual base and research fronts of IL-37: a bibliometric review of the literature from WoSCC. Front Immunol. 2022;13:931783. doi:10.3389/fimmu.2022.931783
  • Chen C, Song M, Glanzel W. Visualizing a field of research: a methodology of systematic scientometric reviews. PLoS One. 2019;14:e0223994. doi:10.1371/journal.pone.0223994
  • Chen C. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Assoc Inf Sci Technol. 2006;57:359–377. doi:10.1002/asi.20317
  • Yao L, Hui L, Yang Z, et al. Freshwater microplastics pollution: detecting and visualizing emerging trends based on Citespace II. Chemosphere. 2020;245:125627. doi:10.1016/j.chemosphere.2019.125627
  • Darvish H. Bibliometric analysis using bibliometrix an r package. J Scientometric Res. 2020;8:156–160. doi:10.5530/jscires.8.3.32
  • L ENW. Visualizing Bibliometric Networks; 2014.
  • Wang Y, Li D, Jia Z, et al. A bibliometric analysis of research on the links between gut microbiota and atherosclerosis. Front Cardiovasc Med. 2022;9:941607. doi:10.3389/fcvm.2022.941607
  • Bajjalieh NL, Jensen AH. Effect of a synthetic antimicrobial agent on the rates of synthesis and degradation of liver and skeletal muscle proteins in growing rats. J Nutr. 1981;111:563–567. doi:10.1093/jn/111.3.563
  • Nelke C, Dziewas R, Minnerup J, et al. Skeletal muscle as potential central link between sarcopenia and immune senescence. EBioMedicine. 2019;49:381–388. doi:10.1016/j.ebiom.2019.10.034
  • Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7:135. doi:10.1038/s41392-022-00974-4
  • World Health Organization. Decade of Healthy Ageing: 2021-2030. World Health Organization, 2020 Available from: https://www.who.int/initiatives/decade-of-healthy-ageing. Accessed june 20, 2024.
  • Collins KH, Paul HA, Hart DA, et al. A high-fat high-sucrose diet rapidly alters muscle integrity, inflammation and gut microbiota in male rats. Sci Rep. 2016;6:37278. doi:10.1038/srep37278
  • Sanchez-Rodriguez D, Locquet M, Reginster JY, et al. Mortality in malnourished older adults diagnosed by ESPEN and GLIM criteria in the SarcoPhAge study. J Cachexia Sarcopenia Mus. 2020;11:1200–1211. doi:10.1002/jcsm.12574
  • Yuan S, Larsson SC. Epidemiology of sarcopenia: prevalence, risk factors, and consequences. Metabolism. 2023;144:155533. doi:10.1016/j.metabol.2023.155533
  • Cox NJ, Bowyer RCE, Ni Lochlainn M, et al. The composition of the gut microbiome differs among community dwelling older people with good and poor appetite. J Cachexia Sarcopenia Mus. 2021;12:368–377. doi:10.1002/jcsm.12683
  • Jollet M, Nay K, Chopard A, et al. Does Physical Inactivity Induce Significant Changes in Human Gut Microbiota? New Answers Using the Dry Immersion Hypoactivity Model. Nutrients. 2021;13:14.
  • Mueller NT, Zhang M, Juraschek SP, et al. Effects of high-fiber diets enriched with carbohydrate, protein, or unsaturated fat on circulating short chain fatty acids: results from the OmniHeart randomized trial. Am J Clin Nutri. 2020;111:545–554. doi:10.1093/ajcn/nqz322
  • Sung MM, Byrne NJ, Robertson IM, et al. Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure. Am J Physiol Heart Circ Physiol. 2017;312:H842–H853.
  • Leal-Diaz AM, Noriega LG, Torre-Villalvazo I, et al. Aguamiel concentrate from Agave salmiana and its extracted saponins attenuated obesity and hepatic steatosis and increased Akkermansia muciniphila in C57BL6 mice. Sci Rep. 2016;6:34242. doi:10.1038/srep34242
  • Yan X, Zhang Y, Peng Y, et al. The water extract of Radix scutellariae, its total flavonoids and baicalin inhibited CYP7A1 expression, improved bile acid, and glycolipid metabolism in T2DM mice. J Ethnopharmacol. 2022;293:115238. doi:10.1016/j.jep.2022.115238
  • Zhang L, Lang H, Ran L, et al. Long-term high loading intensity of aerobic exercise improves skeletal muscle performance via the gut microbiota-testosterone axis. Front Microbiol. 2022;13:1049469. doi:10.3389/fmicb.2022.1049469
  • É B BRMCR, Rangel ÉB. Gut microbiota-derived metabolites are novel targets for improving insulin resistance. World J Diab. 2022;13:65–69. doi:10.4239/wjd.v13.i1.65
  • Parada Venegas D, la Fuente MK D, Landskron G, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019;10:277. doi:10.3389/fimmu.2019.00277
  • LeBlanc JG, Chain F, Martín R, et al. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact. 2017;16:79. doi:10.1186/s12934-017-0691-z
  • Matheus VA, Monteiro L, Oliveira RB, et al. Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Exp Biol Med. 2017;242:1214–1226. doi:10.1177/1535370217708188
  • Tominaga K, Tsuchiya A, Nakano O, et al. Increase in muscle mass associated with the prebiotic effects of 1-kestose in super-elderly patients with sarcopenia. Biosci Microbiota Food Health. 2021;40:150–155. doi:10.12938/bmfh.2020-063
  • Chen LH, Huang SY, Huang KC, et al. Lactobacillus paracasei PS23 decelerated age-related muscle loss by ensuring mitochondrial function in SAMP8 mice. Aging. 2019;11:756–770. doi:10.18632/aging.101782
  • Tang T, Song J, Li J, et al. A synbiotic consisting of Lactobacillus plantarum S58 and hull-less barley beta-glucan ameliorates lipid accumulation in mice fed with a high-fat diet by activating AMPK signaling and modulating the gut microbiota. Carbohydr Polym. 2020;243:116398. doi:10.1016/j.carbpol.2020.116398
  • Tung YT, Zeng JL, Ho ST, et al. Djulis hull improves insulin resistance and modulates the gut microbiota in high-fat diet (HFD)-Induced Hyperglycaemia. Antioxidants. 2021;11:11. doi:10.3390/antiox11010011
  • Serino M, Luche E, Gres S, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61:543–553. doi:10.1136/gutjnl-2011-301012
  • Li H, Shi J, Zhao L, et al. Lactobacillus plantarum KLDS1.0344 and Lactobacillus acidophilus KLDS1.0901 Mixture Prevents Chronic Alcoholic Liver Injury in Mice by Protecting the Intestinal Barrier and Regulating Gut Microbiota and Liver-Related Pathways. J Agric Food Chem. 2021;69:183–197. doi:10.1021/acs.jafc.0c06346
  • Ticinesi A, Mancabelli L, Tagliaferri S, et al. The gut-muscle axis in older subjects with low muscle mass and performance: a proof of concept study exploring fecal microbiota composition and function with shotgun metagenomics sequencing. Int J Mol Sci. 2020; 21. doi:10.3390/ijms22010021
  • Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3:1014–1019. doi:10.1038/ncb1101-1014
  • Lahiri S, Kim H, Garcia-Perez I, et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med. 2019;11.
  • Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014;307:E469–484.
  • Qiu Y, Yu J, Ji X, et al. Ileal FXR-FGF15/19 signaling activation improves skeletal muscle loss in aged mice. Mech Ageing Dev. 2022;202:111630. doi:10.1016/j.mad.2022.111630
  • Kennedy BK, Berger SL, Brunet A, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709–713. doi:10.1016/j.cell.2014.10.039
  • Ling Z, Liu X, Cheng Y, et al. Gut microbiota and aging. Crit Rev Food Sci Nutr. 2020;62:3509–3534. doi:10.1080/10408398.2020.1867054
  • Saito Y, Chikenji TS. Diverse roles of cellular senescence in skeletal muscle inflammation, regeneration, and therapeutics. Front Pharmacol. 2021;12:739510. doi:10.3389/fphar.2021.739510
  • Tingstad RH, Norheim F, Haugen F, et al. The effect of toll-like receptor ligands on energy metabolism and myokine expression and secretion in cultured human skeletal muscle cells. Sci Rep. 2021;11:24219. doi:10.1038/s41598-021-03730-w
  • Mann AO, Hanna BS, Munoz-Rojas AR, et al. IL-17A-producing gammadeltaT cells promote muscle regeneration in a microbiota-dependent manner. J Exp Med. 2022;219.
  • Gérard C, Bruyns C, Marchant A, et al. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J Exp Med. 1993;177:547–550. doi:10.1084/jem.177.2.547
  • Chen LH, Chang SS, Chang HY, et al. Probiotic supplementation attenuates age-related sarcopenia via the gut-muscle axis in SAMP8 mice. J Cachexia Sarcopenia Mus. 2022;13:515–531. doi:10.1002/jcsm.12849
  • Bischoff SC. Microbiota and aging. Curr Opin Clin Nutr Metab Care. 2016;19:26–30. doi:10.1097/MCO.0000000000000242