182
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Tracking the Temporal Footprint Effect of Thermonociception and Denervation on the Brain’s Pain Matrix: fMRI and BOLD Study in Rats

, , ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 857-865 | Published online: 30 Mar 2022

References

  • Merskey H, Bogduk N. Pain terms a current list with definitions and notes on usage. In: Merskey H, Bogduk N, editors. Pain. Vol. 24. Seattle: IASP Press; 1986: S215–S221. doi:10.1016/0304-3959(86)90113-2.
  • Doth AH, Hansson PT, Jensen MP, Taylor RS. The burden of neuropathic pain: a systematic review and meta-analysis of health utilities. Pain. 2010;149(2):338–344. doi:10.1016/j.pain.2010.02.034
  • O’Connor AB. Neuropathic pain: quality-of-life impact, costs and cost effectiveness of therapy. Pharmacoeconomics. 2009;27(2):95–112. doi:10.2165/00019053-200927020-00002
  • Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain. 2013;154(SUPPL. 1):S29–S43. doi:10.1016/j.pain.2013.09.001
  • Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. Neurophysiol Clin. 2000;30(5):263–288. doi:10.1016/S0987-7053(00)00227-6
  • Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463. doi:10.1016/j.ejpain.2004.11.001
  • Davis KD. The neural circuitry of pain as explored with functional MRI. Neurol Res. 2000;22(3):313–317. doi:10.1080/01616412.2000.11740676
  • Graff-Guerrero A, González-Olvera J, Fresán A, Gómez-Martín D, Méndez-Núñez JC, Pellicer F. Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases tolerance to human experimental pain. Cogn Brain Res. 2005;25(1):153–160. doi:10.1016/j.cogbrainres.2005.05.002
  • Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Hypn Theory Res Appl. 2017;277:345–348. doi:10.4324/9781315252858-35
  • Tracey I. Nociceptive processing in the human brain. Curr Opin Neurobiol. 2005;15(4):478–487. doi:10.1016/j.conb.2005.06.010
  • Treede RD, Kenshalo DR, Gracely RH, Jones AKP. The cortical representation of pain. Pain. 1999;79(2–3):105–111. doi:10.1016/S0304-3959(98)00184-5
  • Moisset X, Bouhassira D. Brain imaging of neuropathic pain. Neuroimage. 2007;37(SUPPL. 1):80–88. doi:10.1016/j.neuroimage.2007.03.054
  • López-Avila A, Coffeen U, Ortega-Legaspi JM, Del Ángel R, Pellicer F. Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex. Pain. 2004;111(1–2):136–143. doi:10.1016/j.pain.2004.06.010
  • Pellicer F, Ortega-Legaspi J, López-Avila A, Coffeen U, Jaimes O. Dopamine pathways and receptors in nociception and pain. In: Pharmacology Pain. IASP Press; 2010:241–253.
  • Endo T, Spenger C, Hao J, et al. Functional MRI of the brain detects neuropathic pain in experimental spinal cord injury. Pain. 2008;138(2):292–300. doi:10.1016/j.pain.2007.12.017
  • Hess A, Sergejeva M, Budinsky L, Zeilhofer HU, Brune K. Imaging of hyperalgesia in rats by functional MRI. Eur J Pain. 2007;11(1):109. doi:10.1016/j.ejpain.2006.01.005
  • Luo Z, Yu M, Smith SD, et al. The effect of Intravenous Lidocaine on brain activation during non-noxious and acute noxious stimulation of the forepaw: a functional magnetic resonance imaging study in the rat. Anesth Analg. 2009;108(1):334–344. doi:10.1213/ane.0b013e31818e0d34.
  • Shih YYI, Chen YY, Chen CCV, Chen JC, Chang C, Jaw FS. Whole-brain functional magnetic resonance imaging mapping of acute nociceptive responses induced by formalin in rats using atlas registration-based event-related analysis. J Neurosci Res. 2008;86(8):1801–1811. doi:10.1002/jnr.21638
  • Thompson SJ, Bushnell MC. Rodent functional and anatomical imaging of pain. Neurosci Lett. 2012;520(2):131–139. doi:10.1016/j.neulet.2012.03.015
  • Tuor UI, Malisza K, Foniok T, et al. Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw. Pain. 2000;87(3):315–324. doi:10.1016/S0304-3959(00)00293-1
  • Zhao F, Wang P, Hendrich K, Kim S. Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution. Neuroimage. 2005;27(2):416–424. doi:10.1016/j.neuroimage.2005.04.011
  • Zhao F, Wang P, Hendrich K, Ugurbil K, Kim S. Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation. Neuroimage. 2006;30(4):1149–1160. doi:10.1016/j.neuroimage.2005.11.013
  • Zhao F, Welsh D, Williams M, et al. fMRI of pain processing in the brain: a within-animal comparative study of BOLD vs. CBV and noxious electrical vs. noxious mechanical stimulation in rat. Neuroimage. 2012;59(2):1168–1179. doi:10.1016/j.neuroimage.2011.08.002
  • Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992;89(13):5951–5955. doi:10.1073/pnas.89.13.5951
  • Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. London: Academic Press; 1998.
  • Coderre TJ, Grimes RW, Melzack R. Deafferentation and chronic pain in animals: an evaluation of evidence suggesting autotomy is related to pain. Pain. 1986;26(1):61–84. doi:10.1016/0304-3959(86)90174-0
  • Coderre TJ, Melzack R. Procedures which increase acute pain sensitivity also increase autotomy. Exp Neurol. 1986;92(3):713–722. doi:10.1016/0014-4886(86)90311-0
  • Persson AK, Thun J, Xu XJ, et al. Autotomy behavior correlates with the DRG and spinal expression of sodium channels in inbred mouse strains. Brain Res. 2009;1285:1–13. doi:10.1016/j.brainres.2009.06.012
  • Froesel M, Cappe C, Ben Hamed S. A multisensory perspective onto primate pulvinar functions. Neurosci Biobehav Rev. 2021;125:231–243. doi:10.1016/j.neubiorev.2021.02.043
  • Coffeen U, Ortega-Legaspi JM, de Gortari P, et al. Inflammatory nociception diminishes dopamine release and increases dopamine D2 receptor mRNA in the rat’s insular cortex. Mol Pain. 2010;6(1):75. doi:10.1186/1744-8069-6-75
  • Ortega-Legaspi J, León-Olea M, De Gortari P, et al. Expression of muscarinic M1 and M2 receptors in the anterior cingulate cortex associated with neuropathic pain. Eur J Pain. 2010;14(9):901–910. doi:10.1016/j.ejpain.2010.02.007
  • Ortega-Legaspi J, de Gortari P, Garduño-Gutiérrez R, et al. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain. Mol Pain. 2011;7:1–10. doi:10.1186/1744-8069-7-97
  • Wall PD, Devor M, Inbal R, et al. Autotomy following peripheral nerve lesions: experimental anesthesia dolorosa. Pain. 1979;7(2):103–113. doi:10.1016/0304-3959(79)90002-2
  • Devor M. Ectopic discharge in Aβ afferents as a source of neuropathic pain. Exp Brain Res. 2009;196(1):115–128. doi:10.1007/s00221-009-1724-6
  • Katz J, Melzack R. Pain “memories” in phantom limbs: review and clinical observations. Pain. 1990;43(3):319–336. doi:10.1016/0304-3959(90)90029-D
  • Ortega-Legaspi JM, López-Avila A, Coffeen U, Del Angel R, Pellicer F. Scopolamine into the anterior cingulate cortex diminishes nociception in a neuropathic pain model in the rat: an interruption of “nociception-related memory acquisition”? Eur J Pain. 2003;7(5):425–429. doi:10.1016/S1090-3801(02)00147-7
  • Latremoliere A, Woolf CJ. Central S of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926. doi:10.1016/j.jpain.2009.06.012
  • Westlund K, Vera-Portocarrero L, Zhang L, Wei J, Quast M, Cleeland C. fMRI of supraspinal areas after morphine and one week pancreatic inflammation in rats. Neuroimage. 2009;44(1):23–34. doi:10.1016/j.neuroimage.2008.07.048.fMRI