112
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Activation of Neuroinflammation via mTOR Pathway is Disparately Regulated by Differential Target Multiplexed and Traditional Low-Rate Spinal Cord Stimulation in a Neuropathic Pain Model

ORCID Icon, , , &
Pages 2857-2866 | Received 14 Jun 2022, Accepted 17 Aug 2022, Published online: 13 Sep 2022

References

  • Gaskin DJ, Richard P. The economic costs of pain in the United States. J Pain. 2012;13:715–724. doi:10.1016/j.jpain.2012.03.009
  • Sommer C, Leinders M, Üçeyler N. Inflammation in the pathophysiology of neuropathic pain. Pain. 2018;159:595–602. doi:10.1097/j.pain.0000000000001122
  • Chakravarthy KV, Xing F, Bruno K, et al. A review of spinal and peripheral neuromodulation and neuroinflammation: lessons learned thus far and future prospects of biotype development. Neuromodulation. 2019;22:235–243. doi:10.1111/ner.12859
  • Obara I, Tochiki KK, Géranton SM, et al. Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain. 2011;152:2582–2595. doi:10.1016/j.pain.2011.07.025
  • Codeluppi S, Svensson CI, Hefferan MP, et al. The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord. J Neurosci. 2009;29:1093–1104. doi:10.1523/JNEUROSCI.4103-08.2009
  • Kwon M, Han J, Kim UJ, et al. Inhibition of Mammalian Target of Rapamycin (mTOR) signaling in the insular cortex alleviates neuropathic pain after peripheral nerve injury. Front Mol Neurosci. 2017;10:79. doi:10.3389/fnmol.2017.00079
  • Li G, Lu X, Zhang S, Zhou Q, Zhang L. mTOR and Erk1/2 signaling in the cerebrospinal fluid-contacting nucleus is involved in neuropathic pain. Neurochem Res. 2015;40:1053–1062. doi:10.1007/s11064-015-1564-7
  • Zhang W, Sun XF, Bo JH, et al. Activation of mTOR in the spinal cord is required for pain hypersensitivity induced by chronic constriction injury in mice. Pharmacol Biochem Behav. 2013;111:64–70. doi:10.1016/j.pbb.2013.07.017
  • Ye X, Zhu M, Che X, et al. Lipopolysaccharide induces neuroinflammation in microglia by activating the MTOR pathway and downregulating Vps34 to inhibit autophagosome formation. J Neuroinflammation. 2020;17:18. doi:10.1186/s12974-019-1644-8
  • Deer TR, Mekhail N, Provenzano D, et al.; North R and Neuromodulation Appropriateness Consensus C. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation. 2014;17:515–550; discussion 550. doi:10.1111/ner.12208
  • Moriyama K, Murakawa K, Uno T, et al. A prospective, open-label, multicenter study to assess the efficacy of spinal cord stimulation and identify patients who would benefit. Neuromodulation. 2012;15:7–11; discussion 12. doi:10.1111/j.1525-1403.2011.00411.x
  • Vallejo R, Gupta A, Cedeno DL, et al. Clinical effectiveness and mechanism of action of spinal cord stimulation for treating chronic low back and lower extremity pain: a systematic review. Curr Pain Headache Rep. 2020;24:70. doi:10.1007/s11916-020-00907-2
  • Fishman M, Cordner H, Justiz R, et al. Twelve-Month results from multicenter, open-label, randomized controlled clinical trial comparing differential target multiplexed spinal cord stimulation and traditional spinal cord stimulation in subjects with chronic intractable back pain and leg pain. Pain Pract. 2021;21:912–923. doi:10.1111/papr.13066
  • Vallejo R, Kelley CA, Gupta A, Smith WJ, Vallejo A, Cedeno DL. Modulation of neuroglial interactions using differential target multiplexed spinal cord stimulation in an animal model of neuropathic pain. Mol Pain. 2020;16:1744806920918057. doi:10.1177/1744806920918057
  • Cedeno DL, Smith WJ, Kelley CA, Vallejo R. Spinal cord stimulation using differential target multiplexed programming modulates neural cell-specific transcriptomes in an animal model of neuropathic pain. Mol Pain. 2020;16:1744806920964360. doi:10.1177/1744806920964360
  • Smith WJ, Cedeño DL, Thomas SM, Kelley CA, Vetri F, Vallejo R. Modulation of microglial activation states by spinal cord stimulation in an animal model of neuropathic pain: comparing high rate, low rate, and differential target multiplexed programming. Mol Pain. 2021;17:1744806921999013. doi:10.1177/1744806921999013
  • Tilley DM, Cedeño DL, Vetri F, Platt DC, Vallejo R. Differential target multiplexed spinal cord stimulation programming modulates proteins involved in ion regulation in an animal model of neuropathic pain. Mol Pain. 2022;18:17448069211060181. doi:10.1177/17448069211060181
  • Cedeno DL, Tilley DM, Vetri F, Platt DC, Vallejo R. Proteomic and phosphoproteomic changes of MAPK-related inflammatory response in an animal model of neuropathic pain by differential target multiplexed SCS and low-rate SCS. J Pain Res. 2022;15:895–907. doi:10.2147/JPR.S348738
  • McAlister GC, Nusinow DP, Jedrychowski MP, et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem. 2014;86:7150–7158. doi:10.1021/ac502040v
  • Zhang L, Elias JE. Relative protein quantification using tandem mass tag mass spectrometry. Methods Mol Biol. 2017;1550:185–198. doi:10.1007/978-1-4939-6747-6_14
  • Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5:976–989. doi:10.1016/1044-0305(94)80016-2
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi:10.1093/nar/gky1131
  • Thomas PD, Campbell MJ, Kejariwal A, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–2141. doi:10.1101/gr.772403
  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi:10.1093/nar/28.1.27
  • Yue X, Schunter A, Hummon AB. Comparing multistep immobilized metal affinity chromatography and multistep TiO2 methods for phosphopeptide enrichment. Anal Chem. 2015;87:8837–8844. doi:10.1021/acs.analchem.5b01833
  • Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci. 2013;126:1713–1719. doi:10.1242/jcs.125773
  • Lisi L, Aceto P, Navarra P, Dello Russo C. mTOR kinase: a possible pharmacological target in the management of chronic pain. Biomed Res Int. 2015;2015:394257. doi:10.1155/2015/394257
  • Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell. 2007;12:487–502. doi:10.1016/j.devcel.2007.03.020
  • Wu Y, Zhou BP. Kinases meet at TSC. Cell Res. 2007;17:971–973. doi:10.1038/cr.2007.106
  • Xu B, Liu SS, Wei J, et al. Role of spinal cord Akt-mTOR signaling pathways in postoperative hyperalgesia induced by plantar incision in mice. Front Neurosci. 2020;14:766. doi:10.3389/fnins.2020.00766
  • Cao M, Tan X, Jin W, et al. Upregulation of Ras homolog enriched in the brain (Rheb) in lipopolysaccharide-induced neuroinflammation. Neurochem Int. 2013;62:406–417. doi:10.1016/j.neuint.2013.01.025
  • Lasarge CL, Danzer SC. Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation. Front Mol Neurosci. 2014;7:18. doi:10.3389/fnmol.2014.00018
  • Meikle L, Talos DM, Onda H, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci. 2007;27:5546–5558. doi:10.1523/JNEUROSCI.5540-06.2007
  • Zhang Y, Xu S, Liang KY, et al. Neuronal mTORC1 is required for maintaining the nonreactive state of astrocytes. J Biol Chem. 2017;292:100–111. doi:10.1074/jbc.M116.744482
  • Shih MH, Kao SC, Wang W, Yaster M, Tao YX. Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. J Pain. 2012;13:338–349. doi:10.1016/j.jpain.2011.12.006
  • Geranton SM, Jimenez-Diaz L, Torsney C, et al. A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci. 2009;29:15017–15027. doi:10.1523/JNEUROSCI.3451-09.2009