66
Views
0
CrossRef citations to date
0
Altmetric
Pre-Clinical/Scientific

Ligusticum chuanxiong Hort. Ameliorates Neuropathic Pain by Regulating Microglial M1 Polarization: A Study Based on Network Pharmacology

, &
Pages 1881-1901 | Received 08 Nov 2023, Accepted 09 May 2024, Published online: 23 May 2024

References

  • Scholz J, Finnerup NB, Attal N, et al.; Classification Committee of the Neuropathic Pain Special Interest Group (NeuPSIG). The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain. 2019;160(1):53–59. doi:10.1097/j.pain.0000000000001365
  • Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev. 2021;101(1):259–301. doi:10.1152/physrev.00045.2019
  • Chen R, Yin C, Fang J, Liu B. The NLRP3 inflammasome: an emerging therapeutic target for chronic pain. J Neuroinflammation. 2021;18(1):84. doi:10.1186/s12974-021-02131-0
  • Dydyk AM, Conermann T. Chronic Pain. Treasure Island (FL): In StatPearls; 2020.
  • Curtis AF, Miller MB, Rathinakumar H, et al. Opioid use, pain intensity, age, and sleep architecture in patients with fibromyalgia and insomnia. Pain. 2019;160(9):2086–2092. doi:10.1097/j.pain.0000000000001600
  • Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol Ther. 2020;212:107581. doi:10.1016/j.pharmthera.2020.107581
  • Ma L, Li J, Zhou J, et al. Intravenous lidocaine alleviates postherpetic neuralgia in rats via regulation of neuroinflammation of microglia and astrocytes. iScience. 2021;24(2):102108. doi:10.1016/j.isci.2021.102108
  • Chen H, Zhao Y, Qin G, et al. Antifungal effects and active components of Ligusticum chuanxiong. Molecules. 2022;27(14):4589. doi:10.3390/molecules27144589
  • Chen Z, Zhang C, Gao F, et al. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem Toxicol. 2018;119:309–325. doi:10.1016/j.fct.2018.02.050
  • Wang M, Yao M, Liu J, et al. Ligusticum chuanxiong exerts neuroprotection by promoting adult neurogenesis and inhibiting inflammation in the hippocampus of ME cerebral ischemia rats. J Ethnopharmacol. 2020;249:112385. doi:10.1016/j.jep.2019.112385
  • Pu ZH, Peng C, Xie XF, et al. Alkaloids from the rhizomes of Ligusticum striatum exert antimigraine effects through regulating 5-HT1B receptor and c-Jun. J Ethnopharmacol. 2019;237:39–46. doi:10.1016/j.jep.2019.03.026
  • Chen H, Chen X, Ping Z, et al. Ligusticum chuanxiong promotes the angiogenesis of preovulatory follicles (F1-F3) in late-phase laying hens. Poult Sci. 2023;102(3):102430. doi:10.1016/j.psj.2022.102430
  • Yuan X, Han B, Feng ZM, Jiang JS, Yang YN, Zhang PC. Chemical constituents of Ligusticum chuanxiong and their anti-inflammation and hepatoprotective activities. Bioorg Chem. 2020;101:104016. doi:10.1016/j.bioorg.2020.104016
  • Xiang C, Liao Y, Chen Z, et al. Network Pharmacology and Molecular Docking to Elucidate the Potential Mechanism of Ligusticum Chuanxiong Against Osteoarthritis. Front Pharmacol. 2022;13:854215. doi:10.3389/fphar.2022.854215
  • Du JC, Xie XF, Xiong L, Sun C, Peng C. 川芎挥发油的化学成分与药理活性研究进展 [Research progress of chemical constituents and pharmacological activities of essential oil of Ligusticum chuanxiong]. Zhongguo Zhong Yao Za Zhi. 2016;41(23):4328–4333. Chinese. doi:10.4268/cjcmm20162306
  • Du DD, Zhang MY, Liu Y, et al. 川芎干预Panx1-Src-NMDAR-2B信号通路对神经病理性疼痛模型大鼠中枢敏化的作用机制研究 [Mechanism of Chuanxiong Rhizoma intervention on central sensitization of Panx1-Src-NMDAR-2B signaling pathway in neuropathic pain model rats]. Zhongguo Zhong Yao Za Zhi. 2021;46(16):4175–4186. Chinese. doi:10.19540/j.cnki.cjcmm.20210513.401
  • Tao B, Wang Q, Cao J, et al. The mechanisms of Chuanxiong Rhizoma in treating spinal cord injury based on network pharmacology and experimental verification. Ann Transl Med. 2021;9(14):1145. doi:10.21037/atm-21-2529
  • Wang W, Xu L, Zhou L, Wan S, Jiang L. A network pharmacology approach to reveal the underlying mechanisms of rhizoma dioscoreae nipponicae in the treatment of asthma. Evid Based Complement Alternat Med. 2022;2022:4749613. doi:10.1155/2022/4749613
  • Luo Y, Fu Y, Tan T, et al. Screening of lncRNA-miRNA-mRNA coexpression regulatory networks involved in acute traumatic coagulation dysfunction based on CTD, GeneCards, and PharmGKB databases. Oxid Med Cell Longev. 2022;2022:7280312.
  • Yang J, Wang C, Cheng S, et al. Construction and validation of a novel ferroptosis-related signature for evaluating prognosis and immune microenvironment in ovarian cancer. Front Genet. 2023;13:1094474. doi:10.3389/fgene.2022.1094474
  • Yuan J, Fei Y. Lidocaine ameliorates chronic constriction injury-induced neuropathic pain through regulating M1/M2 microglia polarization. Open Med. 2022;17(1):897–906. doi:10.1515/med-2022-0480
  • Saikia S, Bordoloi M. Molecular docking: challenges, advances and its use in drug discovery perspective. Curr Drug Targets. 2019;20(5):501–521. doi:10.2174/1389450119666181022153016
  • Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol. 2010;229(1–2):26–50. doi:10.1016/j.jneuroim.2010.08.013
  • Abhishek B, Chattopadhyay RR. Isolation, identification and chemical characterization of compounds from phenolic extracts of peels of kufri chipsona-3 and kufri jyoti potatoes having synergistic antioxidant interactions in combination. J Food Nutrit Diet Sci. 2024;2(1):29–40.
  • Zhang X, Guan Z, Wang X, et al. Curcumin alleviates oxaliplatin-induced peripheral neuropathic pain through inhibiting oxidative stress-mediated activation of NF-κB and mitigating inflammation. Biol Pharm Bull. 2020;43(2):348–355. doi:10.1248/bpb.b19-00862
  • Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for traditional Chinese medicine: review and assessment. Front Pharmacol. 2019;10:123. doi:10.3389/fphar.2019.00123
  • Gao C, Zhao Y, Yang T, Gao X, Meng C. Duhuo Jisheng decoction alleviates neuroinflammation and neuropathic pain by suppressing microglial M1 polarization: a network pharmacology research. J Orthop Surg Res. 2023;18(1):629. doi:10.1186/s13018-023-04121-9
  • Liu T, Li T, Chen X, et al. A network-based analysis and experimental validation of traditional Chinese medicine Yuanhu Zhitong Formula in treating neuropathic pain. J Ethnopharmacol. 2021;274:114037. doi:10.1016/j.jep.2021.114037
  • Que W, Wu Z, Chen M, et al. Molecular mechanism of Gelsemium elegans (Gardner and Champ.) Benth. Against neuropathic pain based on network pharmacology and experimental evidence. Front Pharmacol. 2022;12:792932.
  • Shen CY, Lee CF, Chou WT, Hwang JJ, Tyan YS, Chuang HY. Liposomal β-sitosterol suppresses metastasis of CT26/luc colon carcinoma via inhibition of MMP-9 and evoke of immune system. Pharmaceutics. 2022;14(6):1214. doi:10.3390/pharmaceutics14061214
  • Raafat K, Hdaib F. Neuroprotective effects of Moringa oleifera: bio-guided GC-MS identification of active compounds in diabetic neuropathic pain model. Chin J Integr Med. 2017. doi:10.1007/s11655-017-2758-4
  • Cai Y, Xu J, Cheng Q. Proto-oncogene tyrosine-protein kinase SRC (Src) inhibition in microglia relieves neuroinflammation in neuropathic pain mouse models. Bioengineered. 2021;12(2):11390–11398. doi:10.1080/21655979.2021.2008694
  • Eom YH, Kim HS, Lee A, Song BJ, Chae BJ. BCL2 as a subtype-specific prognostic marker for breast cancer. J Breast Cancer. 2016;19(3):252–260. doi:10.4048/jbc.2016.19.3.252
  • Khan A, Shal B, Ullah khan A, et al. Neuroprotective mechanism of Ajugarin-I against Vincristine-Induced neuropathic pain via regulation of Nrf2/NF-κB and Bcl2 signalling. Int Immunopharmacol. 2023;118:110046. doi:10.1016/j.intimp.2023.110046
  • Okerman T, Jurgenson T, Moore M, Klein AH. Inhibition of the phosphoinositide 3-kinase-AKT-cyclic GMP-c-Jun N-terminal kinase signaling pathway attenuates the development of morphine tolerance in a mouse model of neuropathic pain. Mol Pain. 2021;17:17448069211003375. doi:10.1177/17448069211003375
  • Chen SP, Zhou YQ, Liu DQ, et al. PI3K/Akt pathway: a potential therapeutic target for chronic pain. Curr Pharm Des. 2017;23(12):1860–1868. doi:10.2174/1381612823666170210150147
  • Guan Z, Kuhn JA, Wang X, et al. Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat Neurosci. 2016;19(1):94–101. doi:10.1038/nn.4189
  • Piotrowska A, Kwiatkowski K, Rojewska E, Makuch W, Mika J. Maraviroc reduces neuropathic pain through polarization of microglia and astroglia - Evidence from in vivo and in vitro studies. Neuropharmacology. 2016;108:207–219.
  • Wu J, Ding DH, Li QQ, Wang XY, Sun YY, Li LJ. Lipoxin A4 Regulates Lipopolysaccharide-Induced BV2 Microglial Activation and Differentiation via the Notch Signaling Pathway. Front Cell Neurosci. 2019;13:19. doi:10.3389/fncel.2019.00019
  • Liu B, Zhang Y, Yang Z, et al. ω-3 DPA protected neurons from neuroinflammation by balancing microglia M1/M2 polarizations through inhibiting NF-κB/MAPK p38 SIGNALING AND ACTIVATING NEuron-BDNF-PI3K/AKT pathways. Mar Drugs. 2021;19(11):587. doi:10.3390/md19110587
  • Wang Y, Lin Y, Wang L, et al. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer’s disease mice. Aging. 2020;12(20):20862–20879. doi:10.18632/aging.104104
  • Jia ZQ, Zuo C, Yue WF. Kurarinone alleviates hemin-induced neuroinflammation and microglia-mediated neurotoxicity by shifting microglial M1/M2 polarization via regulating the IGF1/PI3K/Akt signaling. Kaohsiung J Med Sci. 2022;38(12):1213–1223. doi:10.1002/kjm2.12597
  • Jiang Q, Wei D, He X, Gan C, Long X, Zhang H. Phillyrin prevents neuroinflammation-induced blood-brain barrier damage following traumatic brain injury via altering microglial polarization. Front Pharmacol. 2021;12:719823. doi:10.3389/fphar.2021.719823
  • Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte Crosstalk in CNS Inflammation. Neuron. 2020;108(4):608–622. doi:10.1016/j.neuron.2020.08.012