71
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Curcumin and an antioxidant formulation protect C57BL/6J mice from MPTP-induced Parkinson’s disease like changes: potential neuroprotection for neurodegeneration

, , &
Pages 49-59 | Published online: 09 Nov 2018

References

  • Nagatsu T, Kato T, Nagatsu I. Catecholamine-related enzymes in the brain of patients with parkinsonism and Wilson’s disease. In: Poirer LJ, Sourkes TL, Bedard PJ, editors. Advances in Neurology, Vol. 24. New York: Raven Press; 1979:283–292.
  • Heikkila RE, Sonsalla PK. The MPTP-treated mouse as a model of parkinsonism: how good is it? Neurochem Int. 1992(20 Suppl):299–303.
  • Forno LS, Norville RL. Ultrastructure of Lewy bodies in the stellate ganglion. Acta Neuropathol. 1976;34(3):183–197.
  • Yahr MD, Bering EA. Parkinson’s disease. Present Status and Research Trends. Yahr MD, Bering EA, editors. US-DHEW PP47, 1968.
  • Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–2047.
  • Leroy E, Anastasopoulos D, Konitsiotis S, Lavedan C, Polymeropoulos MH. Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson’s disease. Hum Genet. 1998;103(4):424–427.
  • Krüger R, Vieira-Saecker AM, Kuhn W, et al. Increased susceptibility to sporadic Parkinson’s disease by a certain combined alpha-synuclein/apolipoprotein E genotype. Ann Neurol. 1999;45(5):611–617.
  • Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–608.
  • Lansbury PT, Brice A. Genetics of Parkinson’s disease and biochemical studies of implicated gene products. Curr Opin Cell Biol. 2002;14(5):653–660.
  • Charlton CG. Fetal and environmental basis for the cause of Parkinson’s disease. In: Barrios FA, Bauer C, editors. Basal Ganglia: An Integrative View. Vol. 64. InTECH, Rijeka, Croatia. http://dx.doi.org/10.5772/2976. Chapter 2: 1212;31–64.
  • Muthian G, Mackey V, King J, Charlton CG. Modeling a sensitization stage and a precipitation stage for Parkinson’s disease using prenatal and postnatal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Neuroscience. 2010;1691093(3):1085–1093.
  • Muthian G, King J, Dent L, Smith M, Mackey V, Charlton C. Prenatal and postnatal exposures to 1-methyl-4-phenyl-1,2,3,6-tetra hydropyridine (MPTP) impaired mouse midbrain dopamine system and may produce a predisposing and inducing model for Parkinson’s disease. J Behav Brain Sci. 2012;02(04):485–494.
  • Beal MF. Oxidative metabolism. Ann N Y Acad Sci. 2000;924:164–169.
  • Przedborski S. Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord. 2005;11(Suppl 1):S3–S7.
  • Jha N. Jurma O, Lalli G, et al. Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex 1 activity: implications for Parkinson’s disease. J Biol Chem. 2000;275:260996–26101.
  • Kühnau J. The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet. 1976;24:117–119.
  • Hertog MG, Hollman PC, Katan MB, Kromhout D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer. 1993;20(1):21–29.
  • Vinson JA, Dabbagh YA, Serry MM, Jang J, Jang J, Cai S. Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease. J Agric Food Chem. 1995;43(11):2800–2802.
  • Wiseman SA, Balentine DA, Frei B. Antioxidants in tea. Crit Rev Food Sci Nutr. 1997;37(8):705–718.
  • Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F. Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic Biol Med. 1995;19(4):481–486.
  • Middleton E, Andaswami CK, Theoharides T. The effect of plant flavonoids on mammalian cells. Pharmacol Rev. 2000;52:673–751.
  • Sudheesh S, Sandhya C, Sarah Koshy A, Vijayalakshmi NR. Antioxidant activity of flavonoids from Solanum melongena. Phytother Res. 1999;13(5):393–396.
  • Park YC, Pae HO, Yoo JC, Choi BM, Jue DM. Chloroquine inhibits inducible nitric oxide synthase expression in murine peritoneal macrophages. Pharmacol Toxicol. 1995;4:188–191.
  • Hoult JR, Moroney MA, Payá M. Actions of flavonoids and coumarins on lipoxygenase and cyclooxygenase. Methods Enzymol. 1994;23454:443.
  • Lodha R, Bagga A. Traditional Indian systems of medicine. Ann Acad Med Singapore. 2000;29(1):37–41.
  • Srimal RC, Dhawan BN. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol. 1973;25(6):447–452.
  • Tobinai M, Shimoyama S, Inoue S, et al. Phase I study of YK-176 (2′deoxycoformycin) in patient with adult T-cell leukemia-lymphoma. Jpn J Clin Oncol. 1992;22:164–171.
  • Hanada US, Ohno N, Ishitsuka K, et al. Combination chemotherapy (RCM Protocol) for the acute or lymphoma type adult T-cell leukemia, Leuk. Lymph. 1995;18:317–321.
  • Chen J, Tang XQ, Zhi JL, et al. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis. 2006;11(6):943–953.
  • Quin XY, Cheng Y, Cui J, Zhang Y, Lc Y. Potential protection of curcumin against amyloid beta-induced toxicity on cultured rat prefrontal cortical neurons. Neurosci Lett. 2009;463:158–161.
  • Lao CD, Normolle D, Heath DD, et al. Ruffin iv, MTDose escalation of curcuminoid formulation. BMC Complement Altern Med. 2006;6(10):6–10.
  • Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol. 2008;75(4):787–809.
  • Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280(7):5892–5901.
  • Logan-Smith MJ, Lockyer PJ, East JM, Lee AG. Curcumin, a molecule that inhibits the Ca2+-ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2+. J Biol Chem. 2001;276(50):46905–46911.
  • Bilmen JG, Khan SZ, Javed MH, Michelangeli F. Inhibition of the SERCA Ca2+ pumps by curcumin. Curcumin putatively stabilizes the interaction between the nucleotide-binding and phosphorylation domains in the absence of ATP. Eur J Biochem. 2001;268(23):6318–6327.
  • Awasthi S, Pandya U, Singhal SS, et al. Curcumin-glutathione interactions and the role of human glutathione S-transferase P1-1. Chem Biol Interact. 2000;128(1):19–38.
  • Jankun J, Aleem AM, Malgorzewicz S, et al. Synthetic curcuminoids modulate the arachidonic acid metabolism of human platelet 12-lipoxygenase and reduce sprout formation of human endothelial cells. Mol Cancer Ther. 2006;5(5):1371–1382.
  • Skrzypczak-Jankun E, Zhou K, Mccabe NP, Selman SH, Jankun J. Structure of curcumin in complex with lipoxygenase and its significance in cancer. Int J Mol Med. 2003;12(1):17–24.
  • Gupta KK, Bharne SS, Rathinasamy K, Naik NR, Panda D. Dietary antioxidant curcumin inhibits microtubule assembly through tubulin binding. Febs J. 2006;273(23):5320–5332.
  • Zsila F, Bikadi Z, Simonyi M. Circular dichroism spectroscopic studies reveal pH dependent binding of curcumin in the minor groove of natural and synthetic nucleic acids. Org Biomol Chem. 2004;2(20):2902–2910.
  • Reddy S, Aggarwal BB. Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett. 1994;341(1):19–22.
  • Betarbet R, Sherer TB, Greenamyre JT. Animal models of Parkinson’s disease. Bioessays. 2002;24(4):308–318.
  • Grünblatt E, Mandel S, Youdim MB. MPTP and 6-hydroxydopamine induced neurodegeneration as models for Parkinson’s disease: neuroprotective strategies. J. Neurol. 2000;247:95–102.
  • Nicotra A, Parvez SH. Cell death induced by MPTP, a substrate for monoamine oxidase B. Toxicology. 2000;153(1-3):157–166.
  • Muthian G, Smith M, Dent L, et al. Curcumin prevents and ameliorates biochemical and behavioral toxicities of MPTP in C57Bl/6J mice: its potential use in preventing and treating parkinsonism. J Parkinsons Dis Alzheimer Dis. 2015;2(2):1–10.
  • Maheshwari RK1, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sci. 2006;782087(18):2081.
  • Commandeur JN, Vermeulen NP. Cytotoxicity and cytoprotective activities of natural compounds. The case of curcumin. Xenobiotica. 1996;26(7):667–680.
  • Kelloff GJ, Crowell JA, Hawk ET, et al. Strategy and planning for chemopreventive drug development: clinical development plans II. J Cell Biochem Suppl. 1996;26:54–71.
  • Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med. 2003;9(1):161–168.
  • Tp N, Chiam PC, Lee T, Chua HC., Lim, L. and Kua, AE. Curry consumption and cognitive function in the elderly. Am J Epidemiol. 2006;164:889–906.
  • Hefti F, Melamed E, Wurtman RJ. Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization. Brain Res. 1980;195(1):123–137.
  • Onn SP, Berger TW, Stricker EM, Zigmond MJ. Effects of intraventricular 6-hydroxydopamine on the dopaminergic innervation of striatum: histochemical and neurochemical analysis. Brain Res. 1986;376(1):8–19.
  • Blanchard V, Anglade P, Dziewczapolski G, Savasta M, Agid Y, Raisman-Vozari R. Dopaminergic sprouting in the rat striatum after partial lesion of the substantia nigra. Brain Res. 1996;709(2):319–325.
  • Blanchard V, Chritin M, Vyas S, et al. Long-term induction of tyrosine hydroxylase expression: compensatory response to partial degeneration of the dopaminergic nigrostriatal system in the rat brain. J Neurochem. 1995;64(4):1669–1679.
  • Pan J, Li H, Ma J-F, et al. Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction. Transl Neurodegener. 2012;1(1):16–19.
  • Jenner P. Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord. 1998;13(Suppl 1):24–34.
  • Kalivendi SV, Cunningham S, Kotamraju S, Joseph J, Hillard CJ, Kalyanaraman B. Alpha-synuclein up-regulation and aggregation during MPP+-induced apoptosis in neuroblastoma cells: intermediacy of transferrin receptor iron and hydrogen peroxide. J Biol Chem. 2004;279(15):15240–15247.
  • Pettifer KM, Jiang S, Bau C, et al. MPP(+)-induced cytotoxicity in neuroblastoma cells: Antagonism and reversal by guanosine. Purinergic Signal. 2007;3(4):399–409.
  • Jagatha B, Mythri RB, Vali S, Bharath MMS. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med. 2008;44(5):907–917.
  • Srivastava, R. and Srimal, RC. Modification of certain inflammation-induced biochemical changes by curcumin. Indian J Med Res. 1985;81:215–223.
  • Shankar TN, Shantha NV, Ramesh HP, Murthy IA, Murthy VS. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs and monkeys. Indian J Exp Biol. 1980;18(1):73–75.
  • Qureshi S, Shah AH, Ageel AM. Toxicity studies on Alpinia galanga and Curcuma longa. Planta Med. 1992;58(2):124–127.
  • Nester EJ, Hyman SE, Malenka RC. Control of movement. In: Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. New York: McGraw-Hill; 2001:312.