14
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Modularity in receptor evolution: insulin- and glucagon-like peptide modules as binding sites for insulin and glucose in the insulin receptor

&
Pages 87-96 | Published online: 26 Jul 2010

References

  • Root-Bernstein RS. Molecular complementarity III. peptide complementarity as a basis for peptide receptor evolution: a bioinformatic case study of insulin, glucagon and gastrin. J Theor Biol. 2002;218(1):71–84.
  • Root-Bernstein RS. Peptide self-aggregation and peptide complementarity as bases for the evolution of peptide receptors: a review. J Mol Recognit. 2005;18(1):40–49.
  • Dwyer DS. Amino acid sequence homology between ligands and their receptors: potential identification of binding sites. Life Sci. 1989;45:421–429.
  • Dwyer DS. Assembly of exons from unitary transposable genetic elements: implications for the evolution of protein-protein interactions. J Theor Biol. 1998;194:11–27.
  • Schwabe C. New thoughts on the evolution of hormone-receptor systems. Comp Biochem Physiol A. 1990;97:101–106.
  • Peterson A, Seed B. Monoclonal antibody and ligand binding sites of the T cell erythrocyte receptor (CD2). Nature. 1987;329:842–846.
  • Root-Bernstein RS, Dobblestein C. Insulin binds to glucagon forming a complex that is hyper-antigenic and inducing complementary antibodies having an idiotype-antiidiotype relationship. Autoimmunity. 2001;33(3):153–169.
  • Dillon PF, Root-Bernstein RS, Lieder CM. Molecular shielding of electric field complex dissociation. Biophysical J. 2006;90:1432–1438.
  • Root-Bernstein RS, Dillon PF. Molecular complementarity I. The complementarity theory of life and its origins. J Theor Biol. 1997;188:447–479.
  • Anzenbacher P, Kalous V Binding of D-glucose to insulin. Biochim Biophys Acta. 1975;386:603–607.
  • Kalous V Anzenbacher P. On the mechanism of the insulin-glucose interactions. Acta Diabetologica Latina. 1979;16:169–174.
  • Yu B, Caspar DL. Structure of cubic insulin crystals in glucose solutions. Biophys J. 1998;74:616–622.
  • Zoete V Meuwly M, Karplus M. Investigation of glucose binding sites on insulin. Proteins. 2004;55(3):568–581.
  • Root-Bernstein RS, Vonck J. Glucose binds to the insulin receptor affecting the mutual affinity of insulin and its receptor. Cell Mol Life Sci. 2009;66:2721–2732.
  • Dillon PF, Root-Bernstein, RS, Lieder CM. Ascorbate enhancement of H1 histamine receptor coincides with ascorbate oxidation inhibition by histamine receptors. Am J Physiol Cell Physiol. 2006;291:C977–C984
  • De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: Implications for drug design. Nature Reviews Drug Discovery. 2002;1:769–783.
  • Huppa JB, Axmann M, Mortelmaier MA, et al. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature. 2010;463:963–967.
  • Pedersen O, Hjollund E, Beck-Nielsen H, Lindskov HO, Sonne O, Gliemann J. Insulin receptor binding and receptor-mediated insulin degradation in human adipocytes. Diabetologia. 1981;20(6):636–641.
  • Martinnen A. Insulin degradation by intact erythrocytes is associated with low-affinity insulin binding sites. J Endocrinol Invest. 1989;12(7):455–459.
  • Whittaker J, Sorensen H, Gadsboll VL, Hinrichsen J. Comparison of the functional insulin binding epitopes of the A and B isoforms of the insulin receptor. JBC. 2002;277:47380–47384.
  • Ottensmeyer FP, Beniac DR, Luo RZT, Yip CC. Mechanisms of transmembrane signaling: Insulin binding and the insulin receptor. Biochemistry. 2000;39(40):12103–12112.
  • Yip CC, Grunfeld C, Goldfine ID. Identification and characterization of the ligand-binding domain of insulin receptor by the use of an antipeptide antiserum against amino acid sequence 241–251 of the alpha subunit. Biochemistry. 1991;30:695–701.
  • Yip CC. The insulin-binding domain of insulin receptor is encoded by exon 2 and 3. J Cell Biochem. 1992;48:19–25.
  • Prigent SA, Stanley KK, Siddle K. Identification of epitopes on the human insulin receptor reacting with rabbit polyclonal sera and mouse monoclonal antibodies. J Biol Chem.1990;265:9970–9977.
  • Fabry M, Schaefer E, Ellis L, Kojro E, Fahrenholz F, Brandenburg D. Detection of a new hormone contact site within the insulin receptor ectodomain by the use of a novel photoreactive insulin. J Biol Chem. 1992;267:8950–8956.
  • Huang K, Chan SJ, Hua QX, et al. The A-chain of insulin contacts the insert domain of the insulin receptor photo-cross-linking and mutagenesis of a diabetes-related crevice. JBC. 2007;282:35337–35349.
  • Longo N, Langley MD, Still SJ. Role of arginine 86 of the insulin receptor in insulin binding and activation of glucose transport. Biochim Biophys Acta. 1998;1402:86–94.
  • Ganong WE. Review of Medical Physiology. 23rd Ed. New York: Prentice Hall; 2005.
  • Li T, Lee HB, Park K. Comparative stereochemical analysis of glucose-binding proteins for rational design of glucose-specific agents. J Biomater Sci Polym Ed. 1998;9(4):327–344.
  • Griffin A, Zhao CW, Wegmann KW, Hickley WF. Experimental autoimmune insulitis. Induction by T lymphocytes specific for a peptide of proinsulin. Am J Pathol. 1995;147(3):845–857.
  • Schloot NC, Willemen S, Duinkerken G, de Vries RR, Roep BO. Cloned T cells from a recent onset IDDM patient reactive with insulin B-chain. J Autoimmun. 1998;11(2):169–175.
  • Narendran P, Williams AJ, Elsegood K, Leech NJ, Dayan CM. Humoral and cellular immune responses to proinsulin in adults with newly diagnosed type 1 diabetes. Diabetes Metab Res Rev. 2003;19(1):52–59.
  • Kent SC, Chen Y, Bregoll L, et al. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature. 2005;435:224–228.
  • Nakayama M, Abiru N, Moriyama H, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 2005;435(7039):220–223.
  • Nakayama M, Beilke JN, Jasinski JM, et al. Priming and effector dependence on insulin B: 9–23 peptide in NOD islet autoimmunity. J Clin Invest. 2007;117(7):1835–1843.
  • Pinkse GG, Tysma OH, Bergen CA, et al. Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci U S A. 2005;102(51):18425–18430.
  • Pinkse GG, Boitard C, Tree TI, Peakman M, Roep BO. HLA class I epitope discovery in type 1 diabetes: independent and reproducible identification of proinsulin epitopes of CD8 T cells – report of the IDS T Cell Workshop Committee. Ann N Y Acad Sci. 2006;1079:19–23.
  • Jarchum I, Baker JC, Yamada T, Takaki T, Marron MP, Serreze DV, DiLorenzo TP. In vivo cytotoxicity of insulin-specific CD8+ T-cells in HLA-A*0201 transgenic NOD mice. Diabetes. 2007;56(10):2551–2560.
  • Gergely A, Koranyl L, Halmos T, et al. Anti-glucagon antibodies in diabetes mellitus. Ann Immunol Hung. 1973;17:231–233.
  • Schopfer K, Matter L, Tenschert R, Bauer S, Zuppinger K. Anti-glucagon-cell and anti-adrenal-medullary-cell antibodies in islet-cell-autoantibody-positive diabetic children. N Engl J Med. 1984;310(23):1536–1537.
  • Root-Bernstein R. A modular insulin-like basis for the evolution of glucose transporters (GLUT) with implications for diabetes. Evolutionary Bioinformatics. 2007;2:317–331.