370
Views
8
CrossRef citations to date
0
Altmetric
Review

Magnetic Controlled Growth Rods in the Treatment of Scoliosis: Safety, Efficacy and Patient Selection

ORCID Icon &
Pages 75-85 | Published online: 17 Mar 2020

References

  • Yang S, LM A, GJ R, Skaggs DL. Early-onset scoliosis: a review of history, current treatment, and future directions. Pediatrics. 2016;137:1. doi:10.1542/peds.2015-0709
  • Campbell RM Jr., Smith MD. Thoracic insufficiency syndrome and exotic scoliosis. J Bone Joint Surg Am Vol. 2007;89(Suppl 1):108–122. doi:10.2106/JBJS.F.00270
  • Canavese F, Dimeglio A. Normal and abnormal spine and thoracic cage development. World J Orthop. 2013;4(4):167–174. doi:10.5312/wjo.v4.i4.167
  • Campbell RM Jr., Smith MD, Mayes TC, et al. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am Vol. 2003;85(3):399–408. doi:10.2106/00004623-200303000-00001
  • Pehrsson K, Larsson S, Oden A, Nachemson A. Long-term follow-up of patients with untreated scoliosis. A study of mortality, causes of death, and symptoms. Spine. 1992;17(9):1091–1096.
  • Baulesh DM, Huh J, Judkins T, Garg S, Miller NH, Erickson MA. The role of serial casting in early-onset scoliosis (EOS). J Pediatr Orthop. 2012;32(7):658–663. doi:10.1097/BPO.0b013e318269c438
  • Waldron SR, Poe-Kochert C, Son-Hing JP, Thompson GH. Early onset scoliosis: the value of serial risser casts. J Pediatr Orthop. 2013;33(8):775–780. doi:10.1097/BPO.0000000000000072
  • Mehta MH. Growth as a corrective force in the early treatment of progressive infantile scoliosis. J Bone Joint Surg Br Vol. 2005;87(9):1237–1247. doi:10.1302/0301-620X.87B9.16124
  • Demirkiran HG, Bekmez S, Celilov R, Ayvaz M, Dede O, Yazici M. Serial derotational casting in congenital scoliosis as a time-buying strategy. J Pediatr Orthop. 2015;35(1):43–49. doi:10.1097/BPO.0000000000000229
  • Harrington PR. Scoliosis in the growing spine. Pediatr Clin North Am. 1963;10:225–245. doi:10.1016/S0031-3955(16)31381-5
  • Moe JH, Kharrat K, Winter RB, Cummine JL. Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children. Clin Orthop Relat Res. 1984;185:35–45.
  • Blakemore LC, Scoles PV, Poe-Kochert C, Thompson GH. Submuscular Isola rod with or without limited apical fusion in the management of severe spinal deformities in young children: preliminary report. Spine. 2001;26(18):2044–2048. doi:10.1097/00007632-200109150-00021
  • Klemme WR, Denis F, Winter RB, Lonstein JW, Koop SE. Spinal instrumentation without fusion for progressive scoliosis in young children. J Pediatr Orthop. 1997;17(6):734–742. doi:10.1097/01241398-199711000-00007
  • Tsirikos AI, Loughenbury PR. Single rod instrumentation in patients with scoliosis and co-morbidities: indications and outcomes. World J Orthop. 2018;9(9):138–148. doi:10.5312/wjo.v9.i9.138
  • Akbarnia BA, Breakwell LM, Marks DS, et al. Dual growing rod technique followed for three to eleven years until final fusion: the effect of frequency of lengthening. Spine. 2008;33(9):984–990. doi:10.1097/BRS.0b013e31816c8b4e
  • Bellinger DC, Calderon J. Neurotoxicity of general anesthetics in children: evidence and uncertainties. Curr Opin Pediatr. 2019;31(2):267–273. doi:10.1097/MOP.0000000000000737
  • Caldas JC, Pais-Ribeiro JL, Carneiro SR. General anesthesia, surgery and hospitalization in children and their effects upon cognitive, academic, emotional and sociobehavioral development - a review. Paediatr Anaesth. 2004;14(11):910–915. doi:10.1111/j.1460-9592.2004.01350.x
  • Baky FJ, Milbrandt TA, Flick R, Larson AN. Cumulative anesthesia exposure in patients treated for early-onset scoliosis. Spine Deform. 2018;6(6):781–786. doi:10.1016/j.jspd.2018.05.001
  • Takaso M, Moriya H, Kitahara H, et al. New remote-controlled growing-rod spinal instrumentation possibly applicable for scoliosis in young children. J Orthop Sci. 1998;3(6):336–340. doi:10.1007/s007760050062
  • Akbarnia BA, Mundis GM Jr., Salari P, Yaszay B, Pawelek JB. Innovation in growing rod technique: a study of safety and efficacy of a magnetically controlled growing rod in a porcine model. Spine. 2012;37(13):1109–1114. doi:10.1097/BRS.0b013e318240ff67
  • Cheung KM, Cheung JP, Samartzis D, et al. Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet. 2012;379(9830):1967–1974. doi:10.1016/S0140-6736(12)60112-3
  • Wick JM, Konze J. A magnetic approach to treating progressive early-onset scoliosis. AORN J. 2012;96(2):163–173. doi:10.1016/j.aorn.2012.05.008
  • Joyce TJ, Smith SL, Rushton PRP, Bowey AJ, Gibson MJ. Analysis of explanted magnetically controlled growing rods from seven UK spinal centers. Spine. 2018;43(1):E16–E22. doi:10.1097/BRS.0000000000002221
  • Akbarnia A, Mundi G. Magnetically controlled growing rods in early onset scoliosis: indications, timing and treatment. Orthopade. 2019;48:477–485. doi:10.1007/s00132-019-03755-0
  • Munigangaiah S, Brown P, Mohamed M, Bruce CE, Trivedi JM, Davidson NT. A novel technique for the subfascial insertion of magnetically controlled growing rods - The Alder Hey technique. J Craniovertebr Junction Spine. 2018;9(4):250–253. doi:10.4103/jcvjs.JCVJS_105_18
  • Yoon WW, Chang AC, Tyler P, Butt S, Raniga S, Noordeen H. The use of ultrasound in comparison to radiography in magnetically controlled growth rod lengthening measurement: a prospective study. Eur Spine J. 2015;24(7):1422–1426. doi:10.1007/s00586-014-3589-z
  • Stokes OM, O’Donovan EJ, Samartzis D, Bow CH, Luk KD, Cheung KM. Reducing radiation exposure in early-onset scoliosis surgery patients: novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Spine j. 2014;14(10):2397–2404. doi:10.1016/j.spinee.2014.01.039
  • Dannawi Z, Altaf F, Harshavardhana NS, El Sebaie H, Noordeen H. Early results of a remotely-operated magnetic growth rod in early-onset scoliosis. Bone Joint J. 2013;95-B(1):75–80. doi:10.1302/0301-620X.95B1.29565
  • Yoon WW, Sedra F, Shah S, Wallis C, Muntoni F, Noordeen H. Improvement of pulmonary function in children with early-onset scoliosis using magnetic growth rods. Spine. 2014;39(15):1196–1202. doi:10.1097/BRS.0000000000000383
  • Hickey BA, Towriss C, Baxter G, et al. Early experience of MAGEC magnetic growing rods in the treatment of early onset scoliosis. Eur Spine J. 2014;23(Suppl 1):S61–S65. doi:10.1007/s00586-013-3163-0
  • Jenks M, Craig J, Higgins J, et al. The MAGEC system for spinal lengthening in children with scoliosis: a NICE medical technology guidance. Appl Health Econ Health Policy. 2014;12(6):587–599. doi:10.1007/s40258-014-0127-4
  • Wang S, Zhang J, Qiu G, et al. Dual growing rods technique for congenital scoliosis: more than 2 years outcomes: preliminary results of a single center. Spine. 2012;37(26):E1639–E1644. doi:10.1097/BRS.0b013e318273d6bf
  • Thompson W, Thakar C, Rolton DJ, Wilson-MacDonald J, Nnadi C. The use of magnetically-controlled growing rods to treat children with early-onset scoliosis: early radiological results in 19 children. Bone Joint J. 2016;98-B(9):1240–1247. doi:10.1302/0301-620X.98B9.37545
  • Dahl B, Dragsted C, Ohrt-Nissen S, Andersen T, Gehrchen M. Use of a distraction-to-stall lengthening procedure in magnetically controlled growing rods: a single-center cohort study. J Orthop Surg. 2018;26(2):2309499018779833. doi:10.1177/2309499018779833
  • Keskinen H, Helenius I, Nnadi C, et al. Preliminary comparison of primary and conversion surgery with magnetically controlled growing rods in children with early onset scoliosis. Eur Spine J. 2016;25(10):3294–3300. doi:10.1007/s00586-016-4597-y
  • Hosseini P, Pawelek J, Mundis GM, et al. Magnetically controlled growing rods for early-onset scoliosis: a multicenter study of 23 cases with minimum 2 years follow-up. Spine. 2016;41(18):1456–1462. doi:10.1097/BRS.0000000000001561
  • Lebon J, Batailler C, Wargny M, et al. Magnetically controlled growing rod in early onset scoliosis: a 30-case multicenter study. Eur Spine J. 2017;26(6):1567–1576. doi:10.1007/s00586-016-4929-y
  • Teoh KH, Winson DM, James SH, et al. Magnetic controlled growing rods for early-onset scoliosis: a 4-year follow-up. Spine j. 2016;16(4 Suppl):S34–S39. doi:10.1016/j.spinee.2015.12.098
  • Thakar C, Kieser DC, Mardare M, Haleem S, Fairbank J, Nnadi C. Systematic review of the complications associated with magnetically controlled growing rods for the treatment of early onset scoliosis. Eur Spine J. 2018;27(9):2062–2071. doi:10.1007/s00586-018-5590-4
  • Kwan KYH, Alanay A, Yazici M, et al. Unplanned reoperations in magnetically controlled growing rod surgery for early onset scoliosis with a minimum of two-year follow-up. Spine. 2017;42(24):E1410–E4. doi:10.1097/BRS.0000000000002297
  • Teoh KH, Winson DM, James SH, et al. Do magnetic growing rods have lower complication rates compared with conventional growing rods? Spine j. 2016;16(4 Suppl):S40–S44. doi:10.1016/j.spinee.2015.12.099
  • Ahmad A, Subramanian T, Panteliadis P, Wilson-Macdonald J, Rothenfluh DA, Nnadi C. Quantifying the ‘law of diminishing returns’ in magnetically controlled growing rods. Bone Joint J. 2017;99-B(12):1658–1664. doi:10.1302/0301-620X.99B12.BJJ-2017-0402.R2
  • Rolton D, Thakar C, Wilson-MacDonald J, Nnadi C. Radiological and clinical assessment of the distraction achieved with remotely expandable growing rods in early onset scoliosis. Eur Spine J. 2016;25(10):3371–3376. doi:10.1007/s00586-015-4223-4
  • Sankar WN, Skaggs DL, Yazici M, et al. Lengthening of dual growing rods and the law of diminishing returns. Spine. 2011;36(10):806–809. doi:10.1097/BRS.0b013e318214d78f
  • Jones CS, Stokes OM, Patel SB, Clarke AJ, Hutton M. Actuator pin fracture in magnetically controlled growing rods: two cases. Spine J. 2016;16(4):e287–e291. doi:10.1016/j.spinee.2015.12.020
  • Campbell P, Chun G, Kossovsky N, Amstutz HC. Histological analysis of tissues suggest that ‘metallosis’ may really be ‘plasticosis’. Proc 38th Annu Meeting Orthop Res Soc. 1992;393.
  • Teoh KH, von Ruhland C, Evans SL, et al. Metallosis following implantation of magnetically controlled growing rods in the treatment of scoliosis: a case series. Bone Joint J. 2016;98-B(12):1662–1667. doi:10.1302/0301-620X.98B12.38061
  • Panagiotopoulou VC, Tucker SK, Whittaker RK, et al. Analysing a mechanism of failure in retrieved magnetically controlled spinal rods. Eur Spine J. 2017;26(6):1699–1710. doi:10.1007/s00586-016-4936-z
  • Rushton PRP, Smith SL, Forbes L, Bowey AJ, Gibson MJ, Joyce TJ. Force testing of explanted magnetically controlled growing rods. Spine. 2019;44(4):233–239. doi:10.1097/BRS.0000000000002806
  • Rushton PRP, Smith SL, Kandemir G, et al. Spinal lengthening with magnetically controlled growing rods: data from the largest series of explanted devices. Spine. 2019;45:170–176.
  • Noordeen HM, Shah SA, Elsebaie HB, Garrido E, Farooq N, Al-Mukhtar M. In vivo distraction force and length measurements of growing rods: which factors influence the ability to lengthen? Spine. 2011;36(26):2299–2303. doi:10.1097/BRS.0b013e31821b8e16
  • Cundy TP, Cundy WJ, Antoniou G, Sutherland LM, Freeman BJ, Cundy PJ. Serum titanium, niobium and aluminium levels two years following instrumented spinal fusion in children: does implant surface area predict serum metal ion levels? Eur Spine J. 2014;23(11):2393–2400. doi:10.1007/s00586-014-3279-x
  • Yilgor C, Efendiyev A, Akbiyik F, et al. Metal ion release during growth-friendly instrumentation for early-onset scoliosis: a preliminary study. Spine Deform. 2018;6(1):48–53. doi:10.1016/j.jspd.2017.06.005
  • Wong CKH, Cheung JPY, Cheung PWH, Lam CLK, Cheung KMC. Traditional growing rod versus magnetically controlled growing rod for treatment of early onset scoliosis: cost analysis from implantation till skeletal maturity. J Orthop Surg. 2017;25(2):2309499017705022. doi:10.1177/2309499017705022
  • Polly DW Jr., Ackerman SJ, Schneider K, Pawelek JB, Akbarnia BA. Cost analysis of magnetically controlled growing rods compared with traditional growing rods for early-onset scoliosis in the US: an integrated health care delivery system perspective. Clinicoecon Outcomes Res. 2016;8:457–465. doi:10.2147/CEOR.S113633
  • Doany ME, Olgun ZD, Kinikli GI, et al. Health-related quality of life in early-onset scoliosis patients treated surgically: EOSQ scores in traditional growing rod versus magnetically controlled growing rods. Spine. 2018;43(2):148–153. doi:10.1097/BRS.0000000000002274
  • Aslan C, Olgun ZD, Ayik G, et al. Does decreased surgical stress really improve the psychosocial health of early-onset scoliosis patients? A comparison of traditional growing rods and magnetically-controlled growing rods patients reveals disappointing results. Spine. 2019;44(11):E656–E663. doi:10.1097/BRS.0000000000002938
  • Fletcher ND, McClung A, Rathjen KE, Denning JR, Browne R, Johnston CE 3rd. Serial casting as a delay tactic in the treatment of moderate-to-severe early-onset scoliosis. J Pediatr Orthop. 2012;32(7):664–671. doi:10.1097/BPO.0b013e31824bdb55
  • Johnston CE, McClung AM, Thompson GH, Poe-Kochert C, Sanders JO; Growing Spine Study G. Comparison of growing rod instrumentation versus serial cast treatment for early-onset scoliosis. Spine Deform. 2013;1(5):339–342. doi:10.1016/j.jspd.2013.05.006
  • Choudhury Z, Tsirikos AI, Marks DS. Early-onset scoliosis - presentation, assessment and treatment options. Orthop Trauma. 2017;31(6):357–363. doi:10.1016/j.mporth.2017.09.006
  • Akbarnia BA, Pawelek JB, Cheung KM, et al. Traditional growing rods versus magnetically controlled growing rods for the surgical treatment of early-onset scoliosis: a case-matched 2-year study. Spine Deform. 2014;2(6):493–497. doi:10.1016/j.jspd.2014.09.050
  • Agarwal A, Goswami A, Vijayaraghavan GP, et al. Quantitative characteristics of consecutive lengthening episodes in early-onset scoliosis (EOS) patients with dual growth rods. Spine. 2019;44(6):397–403. doi:10.1097/BRS.0000000000002835
  • Beaven A, Gardner AC, Marks DS, Mehta JS, Newton-Ede M, Spilsbury JB. Magnetically controlled growing rods: the experience of mechanical failure from a single center consecutive series of 28 children with a minimum follow-up of 2 years. Asian Spine J. 2018;12(5):794–802. doi:10.31616/asj.2018.12.5.794
  • Erdogan S, Polat B, Atici Y, Ozyalvac ON, Ozturk C. Comparison of the Effects of magnetically controlled growing rod and traditional growing rod techniques on the sagittal plane in the treatment of early-onset scoliosis. J Korean Neurosurg Soc. 2019;62(5):577–585. doi:10.3340/jkns.2019.0094
  • McCarthy RE, Luhmann S, Lenke L, McCullough FL. The Shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up: a preliminary report. J Pediatr Orthop. 2014;34(1):1–7. doi:10.1097/BPO.0b013e31829f92dc
  • Andras LM, Joiner ER, McCarthy RE, et al. Growing rods versus Shilla growth guidance: better Cobb angle correction and T1-S1 Length increase but more surgeries. Spine Deform. 2015;3(3):246–252. doi:10.1016/j.jspd.2014.11.005
  • Agarwal A, Aker A, Ahmad A. Active apex correction with guided growth technique for controlling spinal deformity in growing children: a modified SHILLA technique. Global Spine J. 2019;e-pub:1–5.
  • Campbell RM Jr. VEPTR: past experience and the future of VEPTR principles. Eur Spine J. 2013;22(Suppl 2):S106–S117. doi:10.1007/s00586-013-2671-2
  • Yamaguchi KT Jr., Skaggs DL, Mansour S, et al. Are rib versus spine anchors protective against breakage of growing rods? Spine Deform. 2014;2(6):489–492. doi:10.1016/j.jspd.2014.08.007