289
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Monitoring of postural sway with a head-mounted wearable device: effects of gender, participant state, and concussion

, &
Pages 151-164 | Published online: 01 May 2019

References

  • Gurley JM, Hujsak BD, Kelly JL. Vestibular rehabilitation following mild traumatic brain injury. NeuroRehabilitation. 2013;32:519–528. doi:10.3233/NRE-13087423648606
  • Chorney SR, Suryadevara AC, Nicholas BD. Audiovestibular symptoms as predictors of prolonged sports-related concussion among NCAA athletes. Laryngoscope. 2017;127:2850–2853. doi:10.1002/lary.2656428349568
  • Guskiewicz KM, Ross SE, Marshall SW. Postural stability and neuropsychological deficits after concussion in collegiate athletes. J Athl Train. 2001;36:263–273.12937495
  • Fino PC, Nussbaum MA, Brolinson PG. Decreased high-frequency center-of-pressure complexity in recently concussed asymptomatic athletes. Gait Posture. 2016;50:69–74. doi:10.1016/j.gaitpost.2016.08.02627580081
  • Caccese JB, Buckley TA, Tierney RT, Rose WC, Glutting JJ, Kaminski TW. Postural control deficits after repetitive soccer heading. Clin J Sport Med. 2018;1. doi:10.1097/JSM.000000000000070929064867
  • Heick JD, Bay C, Dompier TP, Valovich McLeod TC. Relationships among common vision and vestibular tests in healthy recreational athletes. Int J Sports Phys Ther. 2017;12:581–591.28900564
  • Hwang S, Ma L, Kawata K, Tierney R, Jeka JJ. Vestibular dysfunction after subconcussive head impact. J Neurotrauma. 2017;34:8–15. doi:10.1089/neu.2015.423826885560
  • Miyashita TL, Diakogeorgiou E, Marrie K. The role of subconcussive impacts on sway velocities in division I men’s lacrosse players. Sports Biomech. 2018;36:1–9. doi:10.1080/14763141.2018.1458892
  • Kincl LD, Bhattacharya A, Succop PA, Clark CS. Postural sway measurements: a potential safety monitoring technique for workers wearing personal protective equipment. Appl Occup Environ Hyg. 2002;17:256–266. doi:10.1080/1047322025282656511942669
  • Akin FW, Murnane OD, Hall CD, Riska KM. Vestibular consequences of mild traumatic brain injury and blast exposure: a review. Brain Inj. 2017;31:1188–1194. doi:10.1080/02699052.2017.128892828981340
  • Pan T, Liao K, Roenigk K, Daly JJ, Walker MF. Static and dynamic postural stability in veterans with combat-related mild traumatic brain injury. Gait Posture. 2015;42(42):550–557. doi:10.1016/j.gaitpost.2015.08.01226374930
  • Gupta A, Ledin T, Larsen LE, Lennmarken C, Odkvist LM. Computerized dynamic posturography: a new method for the evaluation of postural stability following anaesthesia. Br J Anaesth. 1991;66:667–672.2064882
  • Weiss A, Herman T, Giladi N, Hausdorff JM. Objective assessment of fall risk in Parkinson‘s disease using a body-fixed sensor worn for 3 days. PLoS One. 2014;9:e96675. doi:10.1371/journal.pone.009667524801889
  • Horak F, King L, Mancini M. Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys Ther. 2015;95:461–470. doi:10.2522/ptj.2014025325504484
  • Gago MF, Fernandes V, Ferreira J, et al. Postural stability analysis with inertial measurement units in Alzheimer‘s disease. Dement Geriatr Cogn Dis Extra. 2014;4:22–30. doi:10.1159/00035747224575114
  • Craig JJ, Bruetsch AP, Lynch SG, Horak FB, Huisinga JM. Instrumented balance and walking assessments in persons with multiple sclerosis show strong test-retest reliability. J Neuroeng Rehabil. 2017;14:43. doi:10.1186/s12984-017-0320-428532417
  • Angelaki DE, Cullen KE. Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci. 2008;31:125–150. doi:10.1146/annurev.neuro.31.060407.12555518338968
  • Knoll RM, Ishai R, Trakimas DR, et al. Peripheral vestibular system histopathologic changes following head injury without temporal bone fracture. Otolaryngol Head Neck Surg 2019;160(1):122–130.
  • Yates BJ. Autonomic reaction to vestibular damage. Otolaryngol Head Neck Surg. 1998;119:106–112. doi:10.1016/S0194-5998(98)70179-29674521
  • Fino PC. A preliminary study of longitudinal differences in local dynamic stability between recently concussed and healthy athletes during single and dual-task gait. J Biomech. 2016;49:1983–1988. doi:10.1016/j.jbiomech.2016.05.00427207386
  • Grooms DR, Onate JA. Neuroscience application to noncontact anterior cruciate ligament injury prevention. Sports Health. 2016;8:149–152. doi:10.1177/194173811561916426608453
  • Lynall RC, Mauntel TC, Padua DA, Mihalik JP. Acute lower extremity injury rates increase after concussion in college athletes. Med Sci Sports Exerc. 2015;47:2487–2492. doi:10.1249/MSS.000000000000071626057941
  • Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35:943–948. doi:10.1177/036354650729953217369562
  • Wilkerson GB, Grooms DR, Acocello SN. Neuromechanical considerations for postconcussion musculoskeletal injury risk management. Curr Sports Med Rep. 2017;16:419–427. doi:10.1249/JSR.000000000000043029135640
  • Beleckas C, Calfee R. Distal radius fractures in the athlete. Curr Rev Musculoskelet Med. 2017;10:62–71. doi:10.1007/s12178-017-9385-828127676
  • King LA, Mancini M, Fino PC, et al. Sensor-based balance measures outperform modified balance error scoring system in identifying acute concussion. Ann Biomed Eng. 2017;45:2135–2145. doi:10.1007/s10439-017-1856-y28540448
  • Maurer C, Peterka RJ. A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol. 2005;93:189–200. doi:10.1152/jn.00221.200415331614
  • Yamamoto T, Smith CE, Suzuki Y, et al. Universal and individual characteristics of postural sway during quiet standing in healthy young adults. Physiol Rep. 2015;3:e12329. doi:10.14814/phy2.1232925780094
  • Nashner LM, Shupert CL, Horak FB, Black FO. Organization of posture controls: an analysis of sensory and mechanical constraints. Prog Brain Res. 1989;80:411–418. discussion 395–397.2699375
  • Palmieri RM, Ingersoll CD, Stone MB, Krause BA. Center-of-pressure parameters used in the assessment of postural control. J Sport Rehab. 2002;11:51–66. doi:10.1123/jsr.11.1.51
  • Neville C, Ludlow C, Rieger B. Measuring postural stability with an inertial sensor: validity and sensitivity. Med Devices (Auckl). 2015;8:447–455. doi:10.2147/MDER.S9171926604839
  • Seimetz C, Tan D, Katayama R, Lockhart T. A comparison between methods of measuring postrual stability: force plates versus accelerometers. Biomed Sci Instrum. 2012;48:386–392.22846310
  • Whitney SL, Roche JL, Marchetti GF, et al. A comparison of accelerometry and center of pressure measures during computerized dynamic posturography: a measure of balance. Gait Posture. 2011;33:594–599. doi:10.1016/j.gaitpost.2011.01.01521333541
  • Sankarpandi SK, Baldwin AJ, Ray J, Mazza C. Reliability of inertial sensors in the assessment of patients with vestibular disorders: a feasibility study. BMC Ear Nose Throat Disord. 2017;17:1. doi:10.1186/s12901-017-0034-z28184173
  • Le Flao E, Hume P, King D. Head impact monitoring: what new methodologies could do for concussion biomechanics. ISBS Proc Arch. 2018;36(Article):257.
  • Salisbury JP, Keshav NU, Sossong AD, Sahin NT. Standing balance assessment using a head-mounted wearable device. bioRxiv. 2017. doi:10.1101/149831
  • Thomas KS, Magal M. How does physical activity impact postural stability? J Nov Physiother. 2014;4:206.
  • Romberg MH. A Manual of the Nervous Diseases of Man. London: New Sydenham Society; 1853.
  • Lanska DJ, Goetz CG. Romberg‘s sign: development, adoption, and adaptation in the 19th century. Neurology. 2000;55:1201–1206.11071500
  • Pereira CB, Strupp M, Holzleitner T, Brandt T. Smoking and balance: correlation of nicotine-induced nystagmus and postural body sway. Neuroreport. 2001;12:1223–1226.11338195
  • Seigle B, Ramdani S, Bernard PL. Dynamical structure of center of pressure fluctuations in elderly people. Gait Posture. 2009;30:223–226. doi:10.1016/j.gaitpost.2009.05.00519493680