164
Views
2
CrossRef citations to date
0
Altmetric
Original Research

NITINOL-based actuator for device control even in high-field MRI environment

, , , &
Pages 285-296 | Published online: 19 Aug 2019

References

  • Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C. Magnetic resonance–compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng. 2007;9(1):351–387. doi:10.1146/annurev.bioeng.9.121806.16064217439358
  • Keeler EK, Casey FX, Engels H, et al. Accessory equipment considerations with respect to MRI compatibility. J Magn Reson Imaging. 1998;8(1):12–18. doi:10.1002/jmri.18800801079500255
  • Friebe M, Sachtler D, Hellwig S, Schlüter M, Sakas G, Jorczyck U (2008) Autonomous navigation assistant for MRI guided interventions. 20th SMIT conference, Vienna, ISBN 3-902087-25-0 Available from: https://www.researchgate.net/publication/282133760. Accessed 11, 2019.
  • Friebe M, Sanchez J, Balakrishnan S, et al. In-room ultrasound fusion combined with fully compatible 3D-printed holding arm - rethinking interventional MRI. Med Devices. 2018;11:77–85. doi:10.2147/MDER.S150459
  • Vartholomeos P, Bergeles C, Qin L, Dupont PE. An MRI-powered and controlled actuator technology for tetherless robotic interventions. Int J Rob Res. 2013;32(13):1536–1552. doi:10.1177/0278364913500362
  • Shellock FG. Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Imaging. 2000;12(1):30–36. doi:10.1002/1522-2586(200007)12:1<30::AID-JMRI4>3.0.CO;2-S10931562
  • Dempsey MF, Condon B, Hadley DM. Investigation of the factors responsible for burns during MRI. J Magn Reson Imaging. 2001;13(4):627–631. doi:10.1002/jmri.108811276109
  • Chinzei K, Kikinis R, Jolesz F. MR compatibility of mechatronic devices. Des Criteria Lect Notes Comput Sci. 2006;1679:1020–1030. doi:10.1007/10704282_111
  • Ninneman S (2016) Momentary air switches, alternate latching air switch Available from: http://presair.com/momentary-alternate-latching-air-switches/. Accessed 1017, 2018.
  • Higuchi T. Next generation actuators leading breakthroughs. J Mech Sci Technol. 2010;24(1):13–18. doi:10.1007/s12206-009-1153-2
  • Mansour SZ, Seethaler RJ. Simultaneous displacement and force estimation of piezoelectric stack actuators using charge and voltage measurements. IEEE/ASME T Mech. 2017;22(6):2619–2624. doi:10.1109/TMECH.2017.2757931
  • Zhu W, Chen G, Rui X. Modeling of piezoelectric stack actuators considering bonding layers. J Intell Mater Syst Struct. 2015;26(17):2418–2427. doi:10.1177/1045389X15575083
  • Kumada A. A piezoelectric ultrasonic motor. Jpn J Appl Phys. 1985;24(S2):739. doi:10.7567/JJAPS.24S2.739
  • Shokrollahi P, Drake JM, Goldenberg AA. Ultrasonic motor-induced geometric distortions in magnetic resonance images. Med Biol Eng Comput. 2018;56(1):61–70. doi:10.1007/s11517-017-1665-328670659
  • Shokrollahi P, Drake JM, Goldenberg AA. Signal-to-noise ratio evaluation of magnetic resonance images in the presence of an ultrasonic motor. Biomed Eng Online. 2017;16(1):45. doi:10.1186/s12938-017-0331-128410615
  • Riener R, Villgrattner T, Kleiser R, Nef T, Kollias S. fMRI-Compatible Electromagnetic Haptic Interface. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference; Shanghai, China, 2005:7024–7027. doi:10.1109/IEMBS.2005.1616123.
  • Stoianovici D, Song D, Petrisor D, et al. “MRI Stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol. 2007;16(4):241–248. doi:10.1080/1364570070152073517763098
  • Kim D, Kobayashi E, Dohi T, Sakuma I. A new, compact MR-compatible surgical manipulator for minimally invasive liver surgery In: Dohi T, Kikinis R, editors. Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002. Berlin, Heidelberg: Springer Berlin Heidelberg; 2002:99–106. doi:10.1007/3-540-45786-0_13
  • Stoianovici D, Patriciu A, Petrisor D, Mazilu D, Kavoussi L. A new type of motor: pneumatic step motor. IEEE ASME Trans Mechatron. 2007;12(1):98–106. doi:10.1109/TMECH.2006.88625821528106
  • Cheng SS, Kim Y, Desai JP. Modeling and characterization of shape memory alloy springs with water cooling strategy in a neurosurgical robot. J Intell Mater Syst Struct. 2017;28(16):2167–2183. doi:10.1177/1045389X1668544328989263
  • Vartholomeos P, Qin L, Dupont PE. MRI-powered actuators for robotic interventions. IEEE/RSJ International Conference on Intelligent Robots and Systems; 2011; 4508–4515. doi:10.1109/IROS.2011.6094962
  • Uchino K. Piezoelectric ultrasonic motors. Overview Smart Mate Struct. 1998;7:273. doi:10.1088/0964-1726/7/3/002
  • Chen Y, Kwok K-W, Tse ZTH. A MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention. Ann Biomed Eng. 2014;42(9):1823–1833. doi:10.1007/s10439-014-1049-x24957635
  • Guo Z, Dong Z, Lee K, et al. Compact design of a hydraulic driving robot for Intraoperative MRI-guided bilateral stereotactic neurosurgery. EEE Robot Autom Lett. 2018;3(3):2515–2522. doi:10.1109/LRA.2018.2814637
  • Chu W-H, Mehregany M, Mullen RL. Analysis of tip deflection and force of a bimetallic cantilever microactuator. J Micromech Microeng. 1993;3:4–7. doi:10.1088/0960-1317/3/1/002
  • Kennedy SP. Material Characterization of Nitinol Wires for the Design of Actuation Systems [master thesis]. San Luis Obispo: California Polytechnic State University; 2013.
  • Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des. 2014;56:1078–1113. doi:10.1016/j.matdes.2013.11.084
  • Jähne R (2017) Datasheet Nitinolwire, Available from: https://www.nitinol-shop.com/. Accessed 11, 2019.
  • Baker I. Fifty Materials that Makes the World. Cham: Springer International Publishing; 2018 137–142. doi:10.1007/978-3-319-78766-4_26
  • Stanford MK. Thermophysical Properties of 60-NITINOL for Mechanical Component Applications 12. NASA/TM-2012-216056. Cleveland, OH: Glenn Research Center; 2012.
  • Bartels LW, Smits HFM, Bakker CJG, Viergever MA. MR imaging of vascular stents: effects of susceptibility, flow, and radiofrequency eddy currents. J Vasc Interv Radiol. 2001;12(3):365–371. doi:10.1016/S1051-0443(07)61918-611287516
  • Melzer A, Michitsch S, Konak S, Schaefers G, Bertsch T. Nitinol in magnetic resonance imaging. Minim Invasive Ther Allied Technol. 2004;13:261–271. doi:10.1080/1364570041002026916754135