832
Views
29
CrossRef citations to date
0
Altmetric
Review

Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz

&
Pages 347-368 | Published online: 12 Sep 2019

References

  • ICNIRP. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 2010;99(6):818–836. doi:10.1097/HP.0b013e3181f06c86.21068601
  • International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (UP TO 300 GHz). Health Phys. 1998;75(5):535. doi:10.1097/HP.0b013e3181aff9db.9790564
  • Green P, Coggon D, de Sèze R, et al. ICNIRP statement on diagnostic devices using non-ionizing radiation: existing regulations and potential health risks. Health Phys. 2017;112(3):305–321. doi:10.1097/HP.000000000000065428121732
  • Victoria G, Petrisor B, Drew B, Dick D. Bone stimulation for fracture healing: what′s all the fuss? Indian J Orthop. 2009;43(2):117. doi:10.4103/0019-5413.5084419838359
  • Ensrud KE. Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci. 2013;68(10):1236–1242. doi:10.1093/gerona/glt09223833201
  • Bassett CAL. Biologic significance of piezoelectricity. Calcif Tissue Res. 1967;1(1):252–272. doi:10.1007/BF02008098
  • Andrew C, Bassett L, Pawluk RJ, Pilla AA. Augmentation of bone repair by inductively coupled electromagnetic fields. Science (80-). 1974;184(4136):575–577. doi:10.1126/science.184.4136.575
  • Bassett CAL. Beneficial effects of electromagnetic fields. J Cell Biochem. 1993;51(4):387–393. doi:10.1002/jcb.24005104028496242
  • Bassett CAL, Pawluk RJ, Pilla AA. Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method. Ann N Y Acad Sci. 1974;238(1):242–262. doi:10.1111/j.1749-6632.1974.tb26794.x4548330
  • Markov MS. Pulsed electromagnetic field therapy history, state of the art and future. Environmentalist. 2007;27(4):465–475. doi:10.1007/s10669-007-9128-2
  • Markov MS. Expanding use of pulsed electromagnetic field therapies. Electromagn Biol Med. 2007;26(3):257–274. doi:10.1080/1536837070158080617886012
  • Pilla AA. Low-intensity electromagnetic and mechanical modulation of bone growth and repair : are they equivalent? J Orthop Sci. 2002;7(3):420–428. doi:10.1007/s00776020007312077675
  • Pilla AA. Nonthermal electromagnetic fields : from first messenger to therapeutic applications. Electromagn Biol Med. 2013;32:123–136. doi:10.3109/15368378.2013.77633523675615
  • Panagopoulos DJ, Karabarbounis A, Margaritis LH. Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun. 2002;298:95–102. doi:10.1016/S0006-291X(02)02393-812379225
  • Funk RHW, Monsees T, Özkucur N. Electromagnetic effects - from cell biology to medicine. Prog Histochem Cytochem. 2009;43(4):177–264. doi:10.1016/j.proghi.2008.07.00119167986
  • Chalidis B, Sachinis N, Assiotis A, Maccauro G. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. Int J Immunopathol Pharmacol. 2011;24(1 Suppl 2):17–20. doi:10.1177/03946320110241S204
  • Luben RA, Cain CD, Chen MC, Rosen DM, Adey WR. Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields. Proc Natl Acad Sci U S A. 1982;79:4180–4184. doi:10.1073/pnas.79.13.41806287472
  • Hopper RA, Verhalen JP, Tepper OT, et al. Osteoblasts stimulated with pulsed electromagnetic fields increase HUVEC proliferation via a VEGF-A independent mechanism. Bioelectromagnetics. 2009;30(3):189–197. doi:10.1002/bem.2045919194859
  • Chang WHS, Chen LT, Sun JS, Lin FH. Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics. 2004;25(6):457–465. doi:10.1002/bem.2001615300732
  • Ferroni L, Tocco I, De Pieri A, et al. Pulsed magnetic therapy increases osteogenic differentiation of mesenchymal stem cells only if they are pre-committed. Life Sci. 2016;152:44–51. doi:10.1016/j.lfs.2016.03.02026979772
  • Zhai M, Jing D, Tong S, et al. Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/beta-catenin signaling-associated mechanism. Bioelectromagnetics. 2016;37(3):152–162. doi:10.1002/bem.2196126891468
  • Funk RHW. Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell. Am J Transl Res. 2018;10(5):1260–1272.29887943
  • Yuan J, Xin F, Jiang W. Underlying signaling pathways and therapeutic applications of pulsed electromagnetic fields in bone repair. Cell Physiol Biochem. 2018;46(4):1581–1594. doi:10.1159/00048920629694967
  • de Girolamo L, Stanco D, Galliera E, et al. Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells. Cell Biochem Biophys. 2013;66(3):697–708. doi:10.1007/s12013-013-9514-y23345006
  • Tepper OM, Callaghan MJ, Chang EI, et al. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. Faseb J. 2004;18(11):1231–1233. doi:10.1096/fj.03-0847fje15208265
  • Daish C, Blanchard R, Fox K, Pivonka P, Pirogova E. The application of pulsed electromagnetic fields (PEMFs) for bone fracture repair: past and perspective findings. Ann Biomed Eng. 2018;46(4):525–542. doi:10.1007/s10439-018-1982-129356996
  • DE HAAS WG, LAZAROVICI MA, MORRISON DM. The effect of low frequency magnetic fields on the healing of the osteotomized rabbit radius. Clin Orthop Relat Res. 2006. doi:10.1097/00003086-197911000-00040
  • Inoue N, Ohnishi I, Chen D, Deitz LW, Schwardt JD, Chao EYS. Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model. J Orthop Res. 2002;20(5):1106–1114. doi:10.1016/S0736-0266(02)00031-112382979
  • Ibiwoye MO, Powell KA, Grabiner MD, et al. Bone mass is preserved in a critical-sized osteotomy by low energy pulsed electromagnetic fields as quantitated by in vivo micro-computed tomography. J Orthop Res. 2004;22(5):1086–1093. doi:10.1016/j.orthres.2003.12.01715304283
  • Midura RJ, Ibiwoye MO, Powell KA, et al. Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res. 2005;23(5):1035–1046. doi:10.1016/j.orthres.2005.03.01515936919
  • Androjna C, Fort B, Zborowski M, Midura RJ. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics. 2014;35(6):396–405. doi:10.1002/bem.2185524764277
  • Atalay Y, Güneş N, Güner MD, Akpolat V, Çelik MS, Güner R. Pentoxifylline and electromagnetic field improved bone fracture healing in rats. Drug Des Devel Ther. 2015;9:5195. doi:10.2147/DDDT.S89669
  • de Haas WG, Watson J, Morrison DM. Non-invasive treatment of ununited fractures of the tibia using electrical stimulation. J Bone Joint Surg Br. 1980;62-B(4):465–470.6968752
  • Handoll HHG, Madhok R, Howe TE. Rehabilitation for distal radial fractures in adults. Cochrane Database Syst Rev. 2006;3:CD003324. doi:10.1002/14651858.CD003324.pub2
  • Sharrard W, Sutcliffe M, Robson M, Maceachern A. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J Bone Joint Surg Br. 2018;64-B(2):189–193. doi:10.1302/0301-620x.64b2.6978339
  • Barker AT, Dixon RA, Sharrard WJW, Sutcliffe ML. PULSED MAGNETIC FIELD THERAPY FOR TIBIAL NON-UNION. Lancet. 1984;323(8384):994–996. doi:10.1016/S0140-6736(84)92329-8
  • Adie S, Harris IA, Naylor JM, et al. Pulsed electromagnetic field stimulation for acute tibial shaft fractures. J Bone Joint Surg Am. 2011;93(17):1569–1576. doi:10.2106/jbjs.j.0086921915570
  • De Carvalho MLL, Motta R, Konrad G, Battaglia MA, Brichetto G. A randomized placebo-controlled cross-over study using a low frequency magnetic field in the treatment of fatigue in multiple sclerosis. Mult Scler J. 2012;18(1):82–89. doi:10.1177/1352458511415748
  • Gupta A, Srivastava K, Avasthi S. Pulsed electromagnetic stimulation in nonunion of tibial diaphyseal fractures. Indian J Orthop. 2009;43(2):156. doi:10.4103/0019-5413.5085019838364
  • Assiotis A, Sachinis NP, Chalidis BE. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. J Orthop Surg Res. 2012;7(1):1. doi:10.1186/1749-799X-7-2422233783
  • Handoll HHG, Brorson S. Interventions for treating proximal humeral fractures in adults. Cochrane Database Syst Rev. 2015;11:CD000434. doi:10.1002/14651858.CD000434.pub4
  • Hannemann PFW, Mommers EHH, Schots JPM, Brink PRG, Poeze M. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg. 2014;134(8):1093–1106. doi:10.1007/s00402-014-2014-824895156
  • Dhawan SK, Conti SF, Towers J, Abidi NA, Vogt M. The effect of pulsed electromagnetic fields on hindfoot arthrodesis: a prospective study. J Foot Ankle Surg. 2004;43(2):93–96. doi:10.1053/j.jfas.2004.01.00715057855
  • Streit A, Watson BC, Granata JD, et al. Effect on clinical outcome and growth factor synthesis with adjunctive use of pulsed electromagnetic fields for fifth metatarsal nonunion fracture: a double-blind randomized study. Foot Ankle Int. 2016;37(9):919–923. doi:10.1177/107110071665262127287343
  • Jimenez H, Blackman C, Lesser G, et al. Use of non-ionizing electromagnetic fields for the treatment of cancer 3. History of radiofrequency electromagnetic fields (RF EMF). Front Biosci (Landmark Ed). 2018;23:284–297.28930547
  • Kok HP, Wust P, Stauffer PR, Bardati F, van Rhoon GC, Crezee J. Current state of the art of regional hyperthermia treatment planning: a review. Radiat Oncol. 2015;10(1):1–14. doi:10.1186/s13014-015-0503-825567003
  • Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3(8):487–497. doi:10.1016/S1470-2045(02)00818-512147435
  • van der Zee J. Heating the patient: a promising approach? Ann Oncol Off J Eur Soc Med Oncol. 2002;13(8):1173–1184. doi:10.1093/annonc/mdf280
  • Cihoric N, Tsikkinis A, Van Rhoon G, et al. Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int J Hyperther. 2015;31(6):609–614. doi:10.3109/02656736.2015.1040471
  • Issels RD, Lindner LH, Verweij J, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 2010;11(6):561–570. doi:10.1016/S1470-2045(10)70071-120434400
  • Overgaard J, Gonzalez Gonzalez D, Hulshof MCCH, et al. Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology. Int J Hyperther. 2009;25(5):323–334. doi:10.1080/02656730903091986
  • Mitsumori M, Zhi-Fan Z, Oliynychenko P, et al. Regional hyperthermia combined with radiotherapy for locally advanced non-small cell lung cancers: a multi-institutional prospective randomized trial of the International Atomic Energy Agency. Int J Clin Oncol. 2007;12(3):192–198. doi:10.1007/s10147-006-0647-517566842
  • Kinoshita T. RFA experiences, indications and clinical outcomes. Int J Clin Oncol. 2019;24:603–607. doi:10.1007/s10147-019-01423-z30859355
  • Vasanthan A, Mitsumori M, Park JH, et al. Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multi-institutional prospective randomized trial of the international atomic energy agency. Int J Radiat Oncol Biol Phys. 2005;61(1):145–153. doi:10.1016/j.ijrobp.2004.04.05715629605
  • Paulides MM, Verduijn GM, Van Holthe N. Status quo and directions in deep head and neck hyperthermia. Radiat Oncol. 2016;11(1). doi:10.1186/s13014-016-0588-8
  • Rao W, Deng Z-S, Liu J. A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Crit Rev Biomed Eng. 2010;38(1):101–116.21175406
  • Luo W, Zhang Y, He G, et al. Effects of radiofrequency ablation versus other ablating techniques on hepatocellular carcinomas: a systematic review and meta-analysis. World J Surg Oncol. 2017;15(1). doi:10.1186/s12957-017-1196-2
  • Uhlig J, Strauss A, Rücker G, et al. Partial nephrectomy versus ablative techniques for small renal masses: a systematic review and network meta-analysis. Eur Radiol. 2019;29(3):1293–1307. doi:10.1007/s00330-018-5660-330255245
  • Yuan Z, Wang Y, Zhang J, Zheng J, Li W. A meta-analysis of clinical outcomes after radiofrequency ablation and microwave ablation for lung cancer and pulmonary metastases. J Am Coll Radiol. 2019;16(3):302–314. doi:10.1016/j.jacr.2018.10.01230642784
  • Issels R, Lindner LH. Regional hyperthermia for high-risk soft tissue sarcoma treatment: present status and next questions. Curr Opin Oncol. 2016;28(5):447–452. doi:10.1097/CCO.000000000000031627455134
  • Trefná DH, Crezee J, Schmidt M, et al. Quality assurance guidelines for superficial hyperthermia clinical trials : II. Technical requirements for heating devices TT - Leitlinien zur Qualitätssicherung der lokalen Hyperthermie in klinischen Studien : II. Technische Anforderungen an Heizgeräte. Strahlenther Onkol. 2017;193(5):351–366. doi:10.1007/s00066-017-1106-028251250
  • Rejinold NS, Jayakumar R, Kim YC. Radio frequency responsive nano-biomaterials for cancer therapy. J Control Release. 2015;204:85–97. doi:10.1016/j.jconrel.2015.02.03625744825
  • Rybka JD. Radiosensitizing properties of magnetic hyperthermia mediated by superparamagnetic iron oxide nanoparticles (SPIONs) on human cutaneous melanoma cell lines. Rep Pract Oncol Radiother. 2019;24(2):152–157. doi:10.1016/j.rpor.2019.01.00230774558
  • Zuvin M, Koçak M, Ünal Ö, et al. Nanoparticle based induction heating at low magnitudes of magnetic field strengths for breast cancer therapy. J Magn Magn Mater. 2019;483:169–177. doi:10.1016/j.jmmm.2019.03.117
  • Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater. 2018. doi:10.1002/adhm.201700845
  • Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–324. doi:10.1007/s11060-010-0389-020845061
  • Bañobre-López M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother. 2013;18(6):397–400. doi:10.1016/j.rpor.2013.09.01124416585
  • Saria MG, Kesari S. Efficacy and safety of treating glioblastoma with tumor-treating fields therapy. Clin J Oncol Nurs. 2016;20(5):9–13. doi:10.1188/16.CJON.S1.9-13
  • Burri SH, Gondi V, Brown PD, Mehta MP. The evolving role of tumor treating fields in managing glioblastoma: guide for oncologists. Am J Clin Oncol Cancer Clin Trials. 2018;41(2):191–196. doi:10.1097/COC.0000000000000395
  • Kirson ED, Dbaly V, Tovarys F, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci. 2007;104(24):10152–10157. doi:10.1073/pnas.070291610417551011
  • Giladi M, Schneiderman RS, Voloshin T, et al. Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells. Sci Rep. 2015;5(1):18046. doi:10.1038/srep1804626658786
  • Wenger C, Bomzon Z, Salvador R, Basser PJ, Miranda PC Simplified realistic human head model for simulating tumor treating fields (TTFields). Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS Orlando, Florida, USA; 2016(2016):5664–5667. doi:10.1109/EMBC.2016.7592012
  • Tuszynski JA, Wenger C, Friesen DE, Preto J. An overview of sub-cellular mechanisms involved in the action of TTFields. Int J Environ Res Public Health. 2016;13:11. doi:10.3390/ijerph13111128
  • Wong ET, Lok E, Swanson KD. An evidence-based review of alternating electric fields therapy for malignant gliomas. Curr Treat Options Oncol. 2015;16(8). doi:10.1007/s11864-015-0353-5
  • Wenger C, Miranda PC, Salvador R, et al. A review on tumor-treating fields (TTFields): clinical implications inferred from computational modeling. IEEE Rev Biomed Eng. 2018;11:195–207. doi:10.1109/RBME.2017.276528229993870
  • Taphoorn MJB, Dirven L, Kanner AA, et al. Influence of treatment with tumor-treating fields on health-related quality of life of patients with newly diagnosed glioblastoma a secondary analysis of a randomized clinical trial. JAMA Oncol. 2018;4(4):495–504. doi:10.1001/jamaoncol.2017.508229392280
  • Stupp R, Idbaih A, Steinberg DM, et al. LTBK-01: prospective, multi-center phase iii trial of tumor treating fields together with temozolomide compared to temozolomide alone in patients with newly diagnosed glioblastoma. Neuro Oncol. 2017;18(suppl_6):i1. doi:10.1093/neuonc/now260
  • Rehman AA, Elmore KB, Mattei TA. The effects of alternating electric fields in glioblastoma: current evidence on therapeutic mechanisms and clinical outcomes. Neurosurg Focus. 2015;38(3):E14. doi:10.3171/2015.1.focus14742
  • Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng. 2014;16(1):295–320. doi:10.1146/annurev-bioeng-071813-10462224905876
  • Mir LM, Belehradek M, Domenge C, et al. Electrochemotherapy, a novel antitumor treatment - 1st clinical-trial. Comptes Rendus Acad des Sci Ser Iii-Sciences la Vie-Life Sci. 1991;313(13):613–8.
  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J. 2018;1(7):841–845. doi:10.1002/j.1460-2075.1982.tb01257.x
  • Calvet CY, Mir LM. The promising alliance of anti-cancer electrochemotherapy with immunotherapy. Cancer Metastasis Rev. 2016;35(2):165–177. doi:10.1007/s10555-016-9615-326993326
  • Saulis G, Venslauskas MS, Naktinis J. Kinetics of pore resealing in cell membranes after electroporation. J Electroanal Chem. 1991;321(1):1–13. doi:10.1016/0022-0728(91)85564-6
  • Levine ZA, Vernier PT. Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol. 2010;236(1):27–36. doi:10.1007/s00232-010-9277-y20623350
  • Moir J, White SA, French JJ, Littler P, Manas DM. Systematic review of irreversible electroporation in the treatment of advanced pancreatic cancer. Eur J Surg Oncol. 2014;40(12):1598–1604. doi:10.1016/j.ejso.2014.08.48025307210
  • Martin RCG, Kwon D, Chalikonda S, et al. Treatment of 200 locally advanced (Stage III) pancreatic adenocarcinoma patients with irreversible electroporation safety and efficacy. Ann Surg. 2015;262:486–492. doi:10.1097/SLA.000000000000144126258317
  • Giardino R, Fini M, Bonazzi V, Cadossi R, Nicolini A, Carpi A. Electrochemotherapy a novel approach to the treatment of metastatic nodules on the skin and subcutaneous tissues. Biomed Pharmacother. 2006;60:458–462. doi:10.1016/j.biopha.2006.07.01616930935
  • Mir LM, Gehl J, Sersa G, et al. Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. Eur J Cancer Suppl. 2006;4(11):14–25. doi:10.1016/j.ejcsup.2006.08.003
  • Campana LG, Edhemovic I, Soden D, et al. Electrochemotherapy – emerging applications technical advances, new indications, combined approaches, and multi-institutional collaboration. Eur J Surg Oncol. 2019;45(2):92–102. doi:10.1016/j.ejso.2018.11.02330528893
  • Calvet CY, Famin D, André FM, Mir LM. Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. Oncoimmunology. 2014;3(4):e28131. doi:10.4161/onci.2813125083316
  • Goggins CA, Khachemoune A. The use of electrochemotherapy in combination with immunotherapy in the treatment of metastatic melanoma: a focused review. Int J Dermatol. 2018;58(8):865-870. doi:10.1111/ijd.14314
  • Frandsen SK, Gissel H, Hojman P, Tramm T, Eriksen J, Gehl J. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res. 2012;72(6):1336–1341. doi:10.1158/0008-5472.CAN-11-378222282658
  • Falk H, Matthiessen LW, Wooler G, Gehl J. Calcium electroporation for treatment of cutaneous metastases; a randomized double-blinded phase II study, comparing the effect of calcium electroporation with electrochemotherapy. Acta Oncol (Madr). 2018;57(3):311–319. doi:10.1080/0284186X.2017.1355109
  • Pasche B, Erman M, Hayduk R, et al. Effects of low energy emission therapy in chronic psychophysiological insomnia. Sleep. 1996;19(4):327–336. doi:10.1093/sleep/19.4.3278776791
  • Barbault A, Costa FP, Bottger B, et al. Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J Exp Clin Cancer Res. 2009;28(1):51. doi:10.1186/1756-9966-28-5119366446
  • Costa FP, De Oliveira AC, Meirelles R, et al. Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. Br J Cancer. 2011;105(5):640–648. doi:10.1038/bjc.2011.29221829195
  • Kasat V, Gupta A, Ladda R, Kathariya M, Saluja H, Farooqui A. Transcutaneous electric nerve stimulation (TENS) in dentistry- a review. J Clin Exp Dent. 2014;6(5):e562–e568. doi:10.4317/jced.5158625674327
  • Gibson W, Wand BM, Ne OC. Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults (Review). Cochrane Database Syst Rev. 2017;9. doi:10.1002/14651858.CD011976.pub2.www.cochranelibrary.com
  • Weiner RD, Reti IM. Key updates in the clinical application of electroconvulsive therapy. Int Rev Psychiatry. 2017;29(2):54–62. doi:10.1080/09540261.2017.130936228406327
  • Fried I. Brain stimulation in alzheimer’s disease. J Alzheimers Dis. 2016;54(2):789–791. doi:10.3233/JAD-16071927567879
  • Kammer T, Spitzer M. Brain stimulation in psychiatry : methods and magnets, patients and parameters. Curr Opin Psychiatry. 2012;25:535–541. doi:10.1097/YCO.0b013e328358df8c22992545
  • Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 2018;103. doi:10.1016/j.yebeh.2018.06.032.
  • Aaronson ST, Conway CR. Vagus nerve stimulation: changing the paradigm for chronic severe depression? Psychiatr Clin North Am. 2018;41(3):409–418. doi:10.1016/j.psc.2018.05.00130098654
  • Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018;11:203–213. doi:10.2147/JIR.S16324829844694
  • Cimpianu CL, Strube W, Falkai P, Palm U, Hasan A. Vagus nerve stimulation in psychiatry: a systematic review of the available evidence. J Neural Transm. 2017;124(1):145–158. doi:10.1007/s00702-016-1642-227848034
  • Chen XL, Xiong YY, Xu GL, Liu XF. Deep brain stimulation. Interv Neurol. 2013;1(3–4):200–212. doi:10.1159/00035312125187779
  • Chervyakov AV, Chernyavsky AY, Sinitsyn DO, Piradov MA. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front Hum Neurosci. 2015;9. doi:10.3389/fnhum.2015.00303.
  • Consales C, Merla C, Marino C, Benassi B. The epigenetic component of the brain response to electromagnetic stimulation in Parkinson’s disease patients: a literature overview. Bioelectromagnetics. 2018;39(1):3–14. doi:10.1002/bem.2208328990199
  • Fisher RS, Eggleston KS, Wright CW. Vagus nerve stimulation magnet activation for seizures: a critical review. Acta Neurol Scand. 2015;131(1):1–8. doi:10.1111/ane.1228825145652
  • Müller HHO, Moeller S, Lücke C, Lam AP, Braun N, Philipsen A. Vagus nerve stimulation (VNS) and other augmentation strategies for therapy-resistant depression (TRD): review of the evidence and clinical advice for use. Front Neurosci. 2018;12:1–10. doi:10.3389/fnins.2018.0023929403346
  • Rao VR, Sellers KK, Wallace DL, et al. Direct electrical stimulation of lateral orbitofrontal cortex acutely improves mood in individuals with symptoms of depression. Curr Biol. 2018:1–10. doi:10.1016/j.cub.2018.10.026.
  • van Belkum SM, Bosker FJ, Kortekaas R, Beersma DGM, Schoevers RA. Treatment of depression with low-strength transcranial pulsed electromagnetic fields: a mechanistic point of view. Prog Neuropsychopharmacol Biol Psychiatry. 2016;71:137–143. doi:10.1016/j.pnpbp.2016.07.00627449361
  • Martiny K, Lunde M, Bech P. Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression. Biol Psychiatry. 2010;68(2):163–169. doi:10.1016/j.biopsych.2010.02.01720385376
  • Straasø B, Lauritzen L, Lunde M, et al. Dose-remission of pulsating electromagnetic fields as augmentation in therapy-resistant depression: a randomized, double-blind controlled study. Acta Neuropsychiatr. 2014;26(5):272–279. doi:10.1017/neu.2014.525241755
  • Bech P, Lindberg L, Straasø B, Larsen ER. A 2-year follow-up study of patients participating in our transcranial pulsating electromagnetic fields augmentation in treatment-resistant depression. Acta Neuropsychiatr. 2015;27(2):119–125. doi:10.1017/neu.2014.4425582756
  • Bech P, Lunde M, Lauritzen L, et al. The diagnostic apathia scale predicts a dose–remission relationship of T-PEMF in treatment-resistant depression. Acta Neuropsychiatr. 2015;27(1):1–7. doi:10.1017/neu.2014.2625273893
  • Bersani FS, Minichino A, Enticott PG, et al. Deep transcranial magnetic stimulation as a treatment for psychiatric disorders: a comprehensive review. Eur Psychiatry. 2013;28(1):30–39. doi:10.1016/j.eurpsy.2012.02.00622559998
  • Perera T, George MS, Grammer G, Janicak PG, Pascual-Leone A, Wirecki TS. The clinical TMS society consensus review and treatment recommendations for TMS therapy for major depressive disorder. Brain Stimul. 2016;9(3):336–346. doi:10.1016/j.brs.2016.03.01027090022
  • Kar SK. Predictors of response to repetitive transcranial magnetic stimulation in depression : a review of recent updates. Clin Psychopharmacol Neurosci. 2019;17(1):25–33. doi:10.9758/cpn.2019.17.1.2530690937
  • Ross C Electromagnetic field devices and their effects on nociception and peripheral inflammatory pain mechanisms; 2016 https://www.researchgate.net/publication/303552715. Accessed 830, 2019.
  • Krath A, Klüter T, Stukenberg M, et al. Electromagnetic transduction therapy in non-specific low back pain: a prospective randomised controlled trial. J Orthop. 2017;14(3):410–415. doi:10.1016/j.jor.2017.06.01628736490
  • Multanen J, Häkkinen A, Heikkinen P, Kautiainen H, Mustalampi S, Ylinen J. Pulsed electromagnetic field therapy in the treatment of pain and other symptoms in fibromyalgia: a randomized controlled study. Bioelectromagnetics. 2018;39(5):405–413. doi:10.1002/bem.2212729709070
  • Wu Z, Ding X, Lei G, et al. Efficacy and safety of the pulsed electromagnetic field in osteoarthritis: a meta-analysis. BMJ Open. 2018;8(12):e022879. doi:10.1136/bmjopen-2018-022879
  • Shaw K, Symington S, Pilot Study HM. Pulsed electromagnetic field therapy (PEMFT) alleviates symptoms of osteoarthritis. Nov Tech Arthritis Bone Res. 2017;1(5):1–8. doi:10.19080/NTAB.2017.01.555571
  • Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Goldring MB, Borea PA, Varani K. Pulsed electromagnetic fields increased the anti-inflammatory effect of A₂A and A₃ adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One. 2013;8(5):e65561. doi:10.1371/journal.pone.006556123741498
  • Merighi S, Gessi S, Bencivenni S, et al. Cytokine signaling pathways involved in anti-inflammatory effects of pulsed electromagnetic field in microglial cells. Cytokine. 2020;125:154777. doi:10.1016/j.cyto.2019.154777
  • Moreno-Duarte I, Morse LR, Alam M, Bikson M, Zafonte R, Fregni F. Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury. Neuroimage. 2014;85:1003–1013. doi:10.1016/j.neuroimage.2013.05.09723727533
  • Sutbeyaz ST, Sezer N, Koseoglu F, Kibar S. Low-frequency pulsed electromagnetic field therapy in fibromyalgia. Clin J Pain. 2009;25(8):722–728. doi:10.1097/AJP.0b013e3181a68a6c19920724
  • Rusovan A, Kanje M. Stimulation of regeneration of the rat sciatic nerve by 50 Hz sinusoidal magnetic fields. Exp Neurol. 1991;112(3):312–316. doi:10.1016/0014-4886(91)90132-V2029930
  • Rusovan A, Kanje M, Mild KH. The stimulatory effect of magnetic fields on regeneration of the rat sciatic nerve is frequency dependent. Exp Neurol. 1992;117(1):81–84. doi:10.1016/0014-4886(92)90113-51618289
  • Bervar M. Effect of weak, interrupted sinusoidal low frequency magnetic field on neural regeneration in rats : functional evaluation. Bioelectromagnetics. 2005;26:351–356. doi:10.1002/bem.2010815887258
  • Suszyński K, Marcol W, Szajkowski S, et al. Variable spatial magnetic field influences peripheral nerves regeneration in rats. Electromagn Biol Med. 2014;33(3):198–205. doi:10.3109/15368378.2013.80135123781984
  • Stölting MNL, Arnold AS, Haralampieva D, Handschin C, Sulser T, Eberli D. Magnetic stimulation supports muscle and nerve regeneration after trauma in mice. Muscle Nerve. 2016;53(4):598–607. doi:10.1002/mus.2478026202157
  • Das S, Kumar S, Jain S, Avelev VD, Mathur R. Exposure to ELF- magnetic field promotes restoration of sensori-motor functions in adult rats with hemisection of thoracic spinal cord. Electromagn Biol Med. 2012;31(3):180–194. doi:10.3109/15368378.2012.69570622897399
  • Ross CL, Syed I, Smith TL, Harrison BS. The regenerative effects of electromagnetic field on spinal cord injury. Electromagn Biol Med. 2017;36(1):74–87. doi:10.3109/15368378.2016.116040827398987
  • Chang C-H, Lane H-Y, Lin C-H. Brain stimulation in alzheimer’s disease. Front Psychiatry. 2018;9:201. doi:10.3389/fpsyt.2018.0020129910746
  • Arendash GW. Review of the evidence that transcranial electromagnetic treatment will be a safe and effective therapeutic against alzheimer’s disease. J Alzheimers Dis. 2016;53(3):753–771. doi:10.3233/JAD-16016527258417
  • Goats GC. Continuous short-wave (radio-frequency) diathermy. Br J Sp Med. 1989;23:123–127. doi:10.1136/bjsm.23.2.123
  • Goats GC. Microwave diathermy. Br J Sports Med. 1990;24(4):212–218. doi:10.1136/bjsm.24.4.2122097017
  • Giombini A, Giovannini V, Di Cesare A, et al. Hyperthermia induced by microwave diathermy in the management of muscle and tendon injuries. Br Med Bull. 2007;83(1):379–396. doi:10.1093/bmb/ldm02017942453
  • Van De Berg NJ, Van Den Dobbelsteen JJ, Jansen FW, Grimbergen CA, Dankelman J. Energetic soft-tissue treatment technologies: an overview of procedural fundamentals and safety factors. Surg Endosc. 2013;27(9):3085–3099. doi:10.1007/s00464-013-2923-623572215
  • Andrade Ortega JA, Cerón Fernández E, García Llorent R, Ribeiro González M, Delgado Martínez AD. Microwave diathermy for treating nonspecific chronic neck pain: a randomized controlled trial. Spine J. 2014;14(8):1712–1721. doi:10.1016/j.spinee.2013.10.02524184641
  • Durmus D, Ulus Y, Alayli G, et al. Does microwave diathermy have an effect on clinical parameters in chronic low back pain? A randomized-controlled trial. J Back Musculoskelet Rehabil. 2014;27(4):435–443. doi:10.3233/BMR-14046424614832
  • Wang H, Zhang C, Gao C, et al. Effects of short-wave therapy in patients with knee osteoarthritis: a systematic review and meta-analysis. Clin Rehabil. 2017;31(5):660–671. doi:10.1177/026921551668300028118736
  • Laufer Y, Dar G. Effectiveness of thermal and athermal short-wave diathermy for the management of knee osteoarthritis: a systematic review and meta-analysis. Osteoarthr Cartil. 2012;20(9):957–966. doi:10.1016/j.joca.2012.05.00522659070
  • Takahashi K, Hashimoto S, Kurosaki H, et al. A pilot study comparing the efficacy of radiofrequency and microwave diathermy in combination with intra-articular injection of hyaluronic acid in knee osteoarthritis. J Phys Ther Sci. 2016;28(2):525–529. doi:10.1589/jpts.28.52527065540
  • Rabini A, Piazzini DB, Tancredi G, et al. Deep heating therapy via microwave diathermy relieves pain and improves physical function in patients with knee osteoarthritis: a double-blind randomized clinical trial. Eur J Phys Rehabil Med. 2012;48(4):549–559.22820824
  • Szlosek PA, Taggart J, Cavallario JM, Hoch JM. Effectiveness of diathermy in comparison with ultrasound or corticosteroids in patients with tendinopathy : a critically appraised topic. J Sport Rehabil. 2014;23:370–375.24457156
  • Rosado MM, Simkó M, Mattsson M, et al. Immune-modulating perspectives for low frequency electromagnetic fields in innate immunity. Front Public Health. 2018;6:1–13. doi:10.3389/fpubh.2018.0008529404319
  • Aziz Z, Bell-Syer SEM. Electromagnetic therapy for treating pressure ulcers. Cochrane Database Syst Rev. 2015;2015(9):1–25. doi:10.1002/14651858.CD002930.pub6
  • Aziz Z, Cullum N. Electromagnetic therapy for treating venous leg ulcers. Cochrane Database Syst Rev. 2015;2015(7):1–31. doi:10.1002/14651858.CD002933.pub6
  • Poletti S, Lucke LD, Bortolazzo FO, et al. Electromagnetic stimulation combined with aloe vera increases collagen reorganization in burn repair. J Pharm Pharmacol. 2018;6(7):633–646. doi:10.17265/2328-2150/2018.07.001
  • Strauch B, Patel MK, Navarro JA, Berdichevsky M, Yu H-L, Pilla AA. Pulsed magnetic fields accelerate cutaneous wound healing in rats. Plast Reconstr Surg. 2007;120(2):425–430. doi:10.1097/01.prs.0000267700.15452.d017632344
  • Game FL, Apelqvist J, Attinger C, et al. Effectiveness of interventions to enhance healing of chronic ulcers of the foot in diabetes: a systematic review. Diabetes Metab Res Rev. 2016;32:154–168. doi:10.1002/dmrr.270726344936
  • Long Y, Wei H, Li J, et al. Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano. 2018:acsnano.8b07038. doi:10.1021/acsnano.8b07038.
  • Guerriero F, Ricevuti G. Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases. Neural Regen Res. 2016;11(12):1888–1895. doi:10.4103/1673-5374.19527728197174
  • Gaynor JS, Hagberg S, Gurfein BT. Veterinary applications of pulsed electromagnetic field therapy. Res Vet Sci. 2018;119:1–8. doi:10.1016/j.rvsc.2018.05.00529775839
  • Veronesi F, Torricelli P, Giavaresi G, et al. In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis. J Orthop Res. 2014;32(5):677–685. doi:10.1002/jor.2258424501089
  • Marks R. Pulsed electromagnetic fields and osteoarthritis : a case where the science and its application do not always concur. EC Orthopaedics. 2017;6(6):216-229.
  • Le Dréan Y, Mahamoud YS, Le Page Y, et al. State of knowledge on biological effects at 40-60 GHz. Comptes Rendus Phys. 2013;14(5):402–411. doi:10.1016/j.crhy.2013.02.005
  • Logani MK, Szabo I, Makar V, Bhanushali A, Alekseev S, Ziskin MC. Effect of millimeter wave irradiation on tumor metastasis. Bioelectromagnetics. 2006;27(4):258–264. doi:10.1002/bem.2020816437545
  • Logani MK, Bhanushali A, Anga A, Majmundar A, Szabo I, Ziskin MC. Combined millimeter wave and cyclophosphamide therapy of an experimental murine melanoma. Bioelectromagnetics. 2004;25(7):516–523. doi:10.1002/bem.2002615376243
  • Ziskin MC. Millimeter waves: acoustic and electromagnetic. Bioelectromagnetics. 2013;34(1):3–14. doi:10.1002/bem.2175022926874
  • Alekseev SI, Gordiienko OV, Ziskin MC. Reflection and penetration depth of millimeter waves in murine skin. Bioelectromagnetics. 2008;29(5):340–344. doi:10.1002/bem.2040118220297
  • Alekseev SI, Radzievsky AA, Logani MK, Ziskin MC. Millimeter wave dosimetry of human skin. Bioelectromagnetics. 2008;29(1):65–70. doi:10.1002/bem.2036317929264
  • Mirbeik-sabzevari A, Member S, Tavassolian N, Member S. Ultra-wideband, stable normal and cancer skin tissue phantoms for millimeter-wave skin cancer imaging. IEEE Trans Biomed Eng. 2018;07030(c):1–11. doi:10.1109/TBME.2018.2828311
  • Radzievsky AA, Gordiienko OV, Alekseev S, Szabo I, Cowan A, Ziskin MC. Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids. Bioelectromagnetics. 2008;29(4):284–295. doi:10.1002/bem.2038918064600
  • Logani MK, Bhopale MK, Ziskin MC. Millimeter wave and drug induced modulation of the immune system - application in cancer immunotherapy. J Cell Sci Ther. 2012;s5(S5). doi:10.4172/2157-7013.S5-002
  • Usichenko TI, Ivashkivsky OI, Gizhko VV. Treatment of rheumatoid arthritis with electromagnetic millimeter waves applied to acupuncture points–a randomized double blind clinical study. Acupunct Electrother Res. 2003;28(1–2):11–18.12934956
  • Usichenko TI, Edinger H, Gizhko VV, Lehmann C, Wendt M, Feyerherd F. Low-intensity electromagnetic millimeter waves for pain therapy. Evid Based Complement Alternat Med. 2006;3(2):201–207. doi:10.1093/ecam/nel01216786049
  • Owda AY, Salmon N, Harmer SW, et al. Millimeter-wave emissivity as a metric for the non-contact diagnosis of human skin conditions. Bioelectromagnetics. 2017;38(7):559–569. doi:10.1002/bem.2207428836682
  • Oh S J, Kim S-H, Jeong K, et al. Measurement depth enhancement in terahertz imaging of biological tissues. Opt Express. 2013;21:21299–21305. doi:10.1364/OE.21.02129924104004
  • Humphreys K, Loughran JP, Gradziel M, et al. Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering. Conf Proc IEEE Eng Med Biol Soc. 2004;2:1302–1305. doi:10.1109/IEMBS.2004.140341017271929
  • Yu C, Fan S, Sun Y, Pickwell-Macpherson E. The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant Imaging Med Surg. 2012;2(1):33–45. doi:10.3978/j.issn.2223-4292.2012.01.0423256057
  • Titova LV, Ayesheshim AK, Golubov A, et al. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue? Sci Rep. 2013;3:2363. doi:10.1038/srep0236323917523
  • Fedorov VI. The biological effects of terahertz laser radiation as a fundamental premise for designing diagnostic and treatment methods. Biophysics (Oxf). 2017;62(2):324–330. doi:10.1134/S0006350917020075
  • Wang M, Yang G, Li W, Wu Q An overview of cancer treatment by terahertz radiation. 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications, IMWS-BIO 2013 - Proceedings Singapore; 2013. doi:10.1109/IMWS-BIO.2013.6756170
  • Kristensen TT, Withayachumnankul W, Jepsen PU, Abbott D. Modeling terahertz heating effects on water. Opt Express. 2010;18(5):4727. doi:10.1364/OE.18.00472720389486
  • Mattsson MO, Zeni O, Simkó M. Is there a biological basis for therapeutic applications of millimetre waves and THz waves? J Infrared Millim Terahertz Waves. 2018;39(9):863–878. doi:10.1007/s10762-018-0483-5
  • Yamazaki S, Harata M, Idehara T, et al. Actin polymerization is activated by terahertz irradiation. Sci Rep. 2018;8(1):1–7. doi:10.1038/s41598-018-28245-929311619
  • Wang L. Microwave sensors for breast cancer detection. Sensors. 2018;18(665):1–17. doi:10.3390/s18020655
  • Kwon S, Lee S. Recent advances in microwave imaging for breast cancer detection. Int J Biomed Imaging. 2016;2016:1–26. doi:10.1155/2016/5054912
  • Modiri A, Goudreau S, Rahimi A, Kiasaleh K. Review of breast screening: towards clinical realization of microwave imaging. Med Phys. 2017;44(12):446–458. doi:10.1111/ijlh.12426
  • Preece AW, Winton HL, Preece AW, et al. MARIA M4 : clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection ultrawideband radar scanner for breast. J Med Imaging. 2016;3(3):0335021–0335027. doi:10.1117/1.JMI.3.3.033502
  • Markov MS. Magnetic field therapy: a review. Electromagn Biol Med. 2007;26(1):1–23. doi:10.1080/1536837060092534217454079