181
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Assessment of an Articulating Laparoscopic Needle Holder (FlexDex™) Compared to a Conventional Rigid Needle Holder in 2-Dimension Vision Amongst Novices: A Randomised Controlled Study

, , , , , , & show all
Pages 15-25 | Published online: 04 Feb 2022

References

  • Zheng J. Design and development of biomedical and surgical instruments in biomedical applications. In: Hudak R, editor. Biomedical Engineering – Technical Applications in Medicine. InTech; 2012. Available from: http://www.intechopen.com/chapters/38772. Accessed January 18, 2022
  • Subido EDC, Pacis DMM, Bugtai NT. Recent technological advancements laparoscopic surgical instruments. Bali, Indonesia; 2018. 040007. Available from: http://aip.scitation.org/doi/abs/10.1063/1.5023977. Accessed January 18, 2022.
  • Berguer R. Surgical technology and the ergonomics of laparoscopic instruments. Surg Endosc. 1998;12(5):458–462. doi:10.1007/s004649900705
  • Anderson PL, Lathrop RA, Webster III RJ. Robot-like dexterity without computers and motors: a review of hand-held laparoscopic instruments with wrist-like tip articulation. Expert Rev Med Devices. 2016;13(7):661–672.
  • Tuncel A, Lucas S, Bensalah K, et al. A randomized comparison of conventional vs articulating laparoscopic needle-drivers for performing standardized suturing tasks by laparoscopy-naive subjects. BJU Int. 2008;101(6):727–730. doi:10.1111/j.1464-410X.2007.07220.x
  • Sieber MA, Fellmann-Fischer B, Mueller M. Performance of Kymerax© precision- drive articulating surgical system compared to conventional laparoscopic instruments in a pelvitrainer model. Surg Endosc. 2017;31(10):4298–4308. doi:10.1007/s00464-017-5438-8
  • Kockerling F. Robotic vs. standard laparoscopic technique - what is better? Front Surg. 2014;1. Available from: http://journal.frontiersin.org/article/10.3389/fsurg.2014.00015/abstract.
  • Anderson P, Lathrop R, Herrell S, Webster R. Comparing a mechanical analogue with the da Vinci user interface: suturing at challenging angles. IEEE Robot Autom Lett. 2016;1(2):1060–1065. doi:10.1109/LRA.2016.2528302
  • Martinec DV, Gatta P, Zheng B, Denk PM, Swanström LL. The trade-off between flexibility and maneuverability: task performance with articulating laparoscopic instruments. Surg Endosc. 2009;23(12):2697–2701.
  • FlexDex™ surgical – the MIS device that moves like you. [cited December 2021]. Available from: http://FlexDex.com/. Accessed January 18, 2022.
  • Vigneswaran H, Crivellaro S. Perform renorrhaphy. Exp Tech Urol Nephrol. 2017;1(2). doi:10.31031/ETUN.2017.01.000506
  • LapPass ® [Internet]. ALSGBI. [ cited May 25, 2019]. Available from: https://www.alsgbi.org/lappass/. Accessed January 18, 2022.
  • Fong M, Treglohan J, Selvasekar C, Sedman P, Leeder P, Francis N. TP8.2.9 development & evaluation of LapPass™: the laparoscopic passport. Br J Surg. 2021;108(Supplement_7). doi:10.1093/bjs/znab362.082
  • Xu AA, Zhu JF, Xie X, Su Y. Mechanical evaluation of articulating instruments and cross-handed manipulation in laparoendoscopic single-site surgery. Surg Innov. 2014;21(4):398–402. doi:10.1177/1553350613509727
  • Criss C, Jarboe M, Claflin J, Matusko N, Rooney D. Evaluating a solely mechanical articulating laparoscopic device: a prospective randomized crossover study. J Laparoendosc Adv Surg Tech A. 2019;29(4):542–550. doi:10.1089/lap.2018.0539
  • Uysal D, Gasch C, Behnisch R, et al. Evaluation of new motorized articulating laparoscopic instruments by laparoscopic novices using a standardized laparoscopic skills curriculum. Surg Endosc. 2020;35(2):979–988. doi:10.1007/s00464-020-08086-2