425
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Assessment of a Non-Invasive Brain Pulse Monitor to Measure Intra-Cranial Pressure Following Acute Brain Injury

, , ORCID Icon, , ORCID Icon, , , ORCID Icon & show all
Pages 15-26 | Received 29 Nov 2022, Accepted 13 Jan 2023, Published online: 24 Jan 2023

References

  • Stiefel MF, Spiotta A, Gracias VH., et al. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg. 2005;103(5):805–811. doi:10.3171/jns.2005.103.5.0805
  • Okonkwo DO, Shutter LA, Moore C, et al. Brain oxygen optimization in severe traumatic brain injury Phase-II: a Phase II randomized trial. Crit Care Med. 2017;45(11):1907–1914. doi:10.1097/CCM.0000000000002619
  • Xie Q, Wu HB, Yan YF, Liu M, Wang ES. Mortality and outcome comparison between brain tissue oxygen combined with intracranial pressure/cerebral perfusion pressure-guided therapy and intracranial pressure/cerebral perfusion pressure-guided therapy in traumatic brain injury: a meta-analysis. World Neurosurg. 2017;100:118–127. doi:10.1016/j.wneu.2016.12.097
  • Maloney-Wilensky E, Gracias V, Itkin A, et al. Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med. 2009;37(6):2057–2063. doi:10.1097/CCM.0b013e3181a009f8
  • Health NMo. Adult Trauma Clinical Practice Guidelines Initial Management of Closed Head Injury in Adults 2nd Edition. Health NMo; 2011.
  • Victoria T. Traumatic brain injury. Available from: http://trauma.reach.vic.gov.au/guidelines/traumatic-brain-injury/key-messages. Accessed January 17, 2023.
  • Le Roux P, Menon DK, Citerio G, et al. The international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: evidentiary tables: a statement for healthcare professionals from the neurocritical care society and the European society of intensive care medicine. Neurocrit Care. 2014;21(Suppl 2):S297–S361. doi:10.1007/s12028-014-0081-x
  • McCredie VA, Chavarria J, Baker AJ. How do we identify the crashing traumatic brain injury patient - The intensivist’s view. Curr Opin Crit Care. 2021;27(3):320–327. doi:10.1097/MCC.0000000000000825
  • Carney N. Guidelines for the Management of severe traumatic brain injury 4th edition. Brain Trauma Foundation; 2016. Available from: https://braintrauma.org/uploads/03/12/Guidelines_for_Management_of_Severe_TBI_4th_Edition.pdf. Accessed January 17, 2023.
  • Tavakoli S, Peitz G, Ares W, Hafeez S, Grandhi R. Complications of invasive intracranial pressure monitoring devices in neurocritical care. Neurosurg Focus. 2017;43(5):E6. doi:10.3171/2017.8.FOCUS17450
  • Oddo M, Levine JM, Mackenzie L, et al. Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery. 2011;69(5):1037–45; discussion 1045. doi:10.1227/NEU.0b013e3182287ca7
  • Barone DG, Czosnyka M. Brain monitoring: do we need a hole? An update on invasive and noninvasive brain monitoring modalities. Sci World J. 2014;2014:795762. doi:10.1155/2014/795762
  • Frigieri G, Andrade RAP, Dias C, et al. Analysis of a non-invasive intracranial pressure monitoring method in patients with traumatic brain injury. Acta Neurochir Suppl. 2018;126:107–110. doi:10.1007/978-3-319-65798-1_23
  • Ballestero MFM, Frigieri G, Cabella BCT, de Oliveira SM, de Oliveira RS. Prediction of intracranial hypertension through noninvasive intracranial pressure waveform analysis in pediatric hydrocephalus. Childs Nerv Syst. 2017;33(9):1517–1524. doi:10.1007/s00381-017-3475-1
  • Rossi DM, Bevilaqua-Grossi D, Mascarenhas S, et al. Noninvasive intracranial pressure monitoring in women with migraine. Sci Rep. 2022;12(1):2635. doi:10.1038/s41598-022-06258-9
  • Dhar R, Sandler RH, Manwaring K, Kostick N, Mansy HA. Noninvasive detection of elevated ICP using spontaneous tympanic membrane pulsation. Sci Rep. 2021;11(1):21957. doi:10.1038/s41598-021-01079-8
  • Kostick N, Manwaring K, Dhar R, Sandler R, Mansy H. The “brain stethoscope”: a non-invasive method for detecting elevated intracranial pressure. Cureus. 2021;13(3):e13865. doi:10.7759/cureus.13865
  • Brasil S, Frigieri G, Taccone FS, et al. Noninvasive intracranial pressure waveforms for estimation of intracranial hypertension and outcome prediction in acute brain-injured patients. J Clin Monit Comput. 2022:1–8. doi:10.1007/s10877-022-00941-y
  • Brasil S, Solla DJF, Nogueira RC, Teixeira MJ, Malbouisson LMS, Paiva WDS. A novel noninvasive technique for intracranial pressure waveform monitoring in critical care. J Pers Med. 2021;11(12). doi:10.3390/jpm11121302
  • Herklots MW, Moudrous W, Oldenbeuving A, et al. Prospective evaluation of noninvasive HeadSense intracranial pressure monitor in traumatic brain injury patients undergoing invasive intracranial pressure monitoring. World Neurosurg. 2017;106:557–562. doi:10.1016/j.wneu.2017.07.022
  • Evensen KB, Eide PK. Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids Barriers CNS. 2020;17(1):34. doi:10.1186/s12987-020-00195-3
  • Ruesch A, Yang J, Schmitt S, Acharya D, Smith MA, Kainerstorfer JM. Estimating intracranial pressure using pulsatile cerebral blood flow measured with diffuse correlation spectroscopy. Biomed Opt Express. 2020;11(3):1462–1476. doi:10.1364/BOE.386612
  • Tabassum S, Ruesch A, Acharya D, et al. Clinical translation of noninvasive intracranial pressure sensing with diffuse correlation spectroscopy. J Neurosurg. 2022:1–10. doi:10.3171/2022.9.JNS221203
  • Fischer JB, Ghouse A, Tagliabue S, et al. Non-invasive estimation of intracranial pressure by diffuse optics: a proof-of-concept study. J Neurotrauma. 2020;37(23):2569–2579. doi:10.1089/neu.2019.6965
  • Themelis G, D’Arceuil H, Diamond SG, et al. Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations. J Biomed Opt. 2007;12(1):014033. doi:10.1117/1.2710250
  • Milej D, Abdalmalak A, Rajaram A, St Lawrence K. Direct assessment of extracerebral signal contamination on optical measurements of cerebral blood flow, oxygenation, and metabolism. Neurophotonics. 2020;7(4):045002. doi:10.1117/1.NPh.7.4.045002
  • Ruesch A, Schmitt S, Yang J, Smith MA, Kainerstorfer JM. Fluctuations in intracranial pressure can be estimated non-invasively using near-infrared spectroscopy in non-human primates. J Cereb Blood Flow Metab. 2020;40(11):2304–2314. doi:10.1177/0271678X19891359
  • Abay TY, Phillips JP, Uff C, Roldan M, Kyriacou PA. In vitro evaluation of a non-invasive photoplethysmography based intracranial pressure sensor. Appl Sci. 2023;13(1). doi:10.3390/app13010534
  • Dixon B, MacLeod DB. Assessment of a non invasive brain oximeter in volunteers undergoing acute hypoxia. Med Devices. 2020;13:183–194. doi:10.2147/MDER.S250102
  • Dixon B, Turner R, Christou C. Assessment of a non-invasive brain oximeter in a sheep model of acute brain injury. Med Devices. 2019;12:479–487. doi:10.2147/MDER.S235804
  • Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg. 1983;59(5):817–821. doi:10.3171/jns.1983.59.5.0817
  • Hirai O, Handa H, Ishikawa M, Kim SH. Epidural pulse waveform as an indicator of intracranial pressure dynamics. Surg Neurol. 1984;21(1):67–74. doi:10.1016/0090-3019(84)90404-X
  • Hirai O, Handa H, Ishikawa M, Kim SH, Yoshida S. Changes in intracranial pressure and epidural pulse waveform following cold injury. Acta Neurochir. 1985;77(1–2):14–21. doi:10.1007/BF01402300
  • Gagnon L, Sakadzic S, Lesage F, et al. Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe. J Neurosci. 2015;35(8):3663–3675. doi:10.1523/JNEUROSCI.3555-14.2015
  • Havlicek M, Uludag K. A dynamical model of the laminar BOLD response. Neuroimage. 2020;204:116209. doi:10.1016/j.neuroimage.2019.116209
  • Hua J, Liu P, Kim T, et al. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage. 2019;187:17–31. doi:10.1016/j.neuroimage.2018.02.027
  • Weber B, Keller AL, Reichold J, Logothetis NK. The microvascular system of the striate and extrastriate visual cortex of the macaque. Cereb Cortex. 2008;18(10):2318–2330. doi:10.1093/cercor/bhm259
  • van Raaij ME, Lindvere L, Dorr A, et al. Quantification of blood flow and volume in arterioles and venules of the rat cerebral cortex using functional micro-ultrasound. Neuroimage. 2012;63(3):1030–1037. doi:10.1016/j.neuroimage.2012.07.054
  • Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology. 1992;34(5):370–380. doi:10.1007/BF00596493
  • Soellinger M, Ryf S, Boesiger P, Kozerke S. Assessment of human brain motion using CSPAMM. J Magn Reson Imaging. 2007;25(4):709–714. doi:10.1002/jmri.20882
  • Britt RH, Rossi GT. Quantitative analysis of methods for reducing physiological brain pulsations. J Neurosci Methods. 1982;6(3):219–229. doi:10.1016/0165-0270(82)90085-1
  • Duvernoy HM. Cortical Veins of the Human Brain. Springer Vienna; 1983:3–38.
  • Murthy IS, Rangaraj MR. New concepts for PVC detection. IEEE Trans Biomed Eng. 1979;26(7):409–416. doi:10.1109/tbme.1979.326420
  • Brasil S, Solla DJF, Nogueira RC, Jacobsen Teixeira M, Malbouisson LMS, Paiva WS. Intracranial compliance assessed by intracranial pressure pulse waveform. Brain Sci. 2021;11(8):971. doi:10.3390/brainsci11080971
  • Smits M, Dippel DW, Steyerberg EW, et al. Predicting intracranial traumatic findings on computed tomography in patients with minor head injury: the CHIP prediction rule. Ann Intern Med. 2007;146(6):397–405. doi:10.7326/0003-4819-146-6-200703200-00004
  • Ellis T, McNames J, Aboy M. Pulse morphology visualization and analysis with applications in cardiovascular pressure signals. IEEE Trans Biomed Eng. 2007;54(9):1552–1559. doi:10.1109/TBME.2007.892918
  • Relander FAJ, Ruesch A, Yang J, et al. Using near-infrared spectroscopy and a random forest regressor to estimate intracranial pressure. Neurophotonics. 2022;9(4):045001. doi:10.1117/1.NPh.9.4.045001
  • Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–1350. doi:10.1177/0271678X16648711
  • McAvoy J, Jaffe R, Brock-Utne J, Lopez J, Brodt J. Cerebral oximetry fails as a monitor of brain perfusion in cardiac surgery: a case report. A A Pract. 2019;12(11):441–443. doi:10.1213/XAA.0000000000000963
  • Greenberg S, Murphy G, Shear T, et al. Extracranial contamination in the INVOS 5100C versus the FORE-SIGHT ELITE cerebral oximeter: a prospective observational crossover study in volunteers. Can J Anaesth. 2016;63(1):24–30. doi:10.1007/s12630-015-0451-7
  • Kato S, Yoshitani K, Kubota Y, Inatomi Y, Ohnishi Y. Effect of posture and extracranial contamination on results of cerebral oximetry by near-infrared spectroscopy. J Anesth. 2017;31(1):103–110. doi:10.1007/s00540-016-2275-1
  • Buell T, Ding D, Raper D, et al. Resolution of venous pressure gradient in a patient with idiopathic intracranial hypertension after ventriculoperitoneal shunt placement: a proof of secondary cerebral sinovenous stenosis. Surg Neurol Int. 2021;12:14. doi:10.25259/SNI_700_2020
  • Lazzaro MA, Darkhabani Z, Remler BF, et al. Venous sinus pulsatility and the potential role of dural incompetence in idiopathic intracranial hypertension. Neurosurgery. 2012;71(4):877–883. doi:10.1227/NEU.0b013e318267a8f9
  • Qureshi AI, Qureshi MH, Majidi S, Gilani WI, Siddiq F. Dural venous sinuses distortion and compression with supratentorial mass lesions: a mechanism for refractory intracranial hypertension? J Vasc Interv Neurol. 2014;7(1):35–42.
  • Kasprowicz M, Lalou DA, Czosnyka M, Garnett M, Czosnyka Z. Intracranial pressure, its components and cerebrospinal fluid pressure-volume compensation. Acta Neurol Scand. 2016;134(3):168–180. doi:10.1111/ane.12541
  • Eide PK. Comparison of simultaneous continuous intracranial pressure (ICP) signals from ICP sensors placed within the brain parenchyma and the epidural space. Med Eng Phys. 2008;30(1):34–40. doi:10.1016/j.medengphy.2007.01.005
  • Raabe A, Totzauer R, Meyer O, Stockel R, Hohrein D, Schoche J. Reliability of epidural pressure measurement in clinical practice: behavior of three modern sensors during simultaneous ipsilateral intraventricular or intraparenchymal pressure measurement. Neurosurgery. 1998;43(2):306–311. doi:10.1097/00006123-199808000-00073
  • Nornes H, Sundbarg G. Simultaneous recording of the ventricular fluid pressure and the epidural pressure. Eur Neurol. 1972;7(6):364–372. doi:10.1159/000114440
  • Childs C, Shen L. Regional pressure and temperature variations across the injured human brain: comparisons between paired intraparenchymal and ventricular measurements. Crit Care. 2015;19:267. doi:10.1186/s13054-015-0982-x
  • Wolfla CE, Luerssen TG, Bowman RM, Putty TK. Brain tissue pressure gradients created by expanding frontal epidural mass lesion. J Neurosurg. 1996;84(4):642–647. doi:10.3171/jns.1996.84.4.0642
  • Robertson CS, Narayan RK, Contant CF, et al. Clinical experience with a continuous monitor of intracranial compliance. J Neurosurg. 1989;71(5 Pt 1):673–680. doi:10.3171/jns.1989.71.5.0673
  • Brasil S. Intracranial pressure pulse morphology: the missing link? Intensive Care Med. 2022;48(11):1667–1669. doi:10.1007/s00134-022-06855-2
  • Germon K. Interpretation of ICP pulse waves to determine intracerebral compliance. J Neurosci Nurs. 1988;20(6):344–351. doi:10.1097/01376517-198812000-00004