166
Views
1
CrossRef citations to date
0
Altmetric
Review

Nanoscale virus biosensors: state of the art

, , , , , , , & show all
Pages 47-66 | Published online: 06 Aug 2015

References

  • Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1963;102(1):29–45.
  • Arnold MA, Meyerhoff ME. Recent advances in the development and analytical applications of biosensing probes. CRC Crit Rev Anal Chem. 1988;20(3):149–196.
  • Wilson GS, Gifford R. Biosensors for real-time in vivo measurements. Biosens Bioelectron. 2005;20(12):2388–2403.
  • Krejcova L, Hynek D, Adam V, Hubalek J, Kizek R. Electrochemical sensors and biosensors for influenza detection. Int J Electrochem Sci. 2012;7(11):10779–10801.
  • Velasco-Garcia MN, Mottram T. Biosensor technology addressing agricultural problems. Biosystems Eng. 2003;84(1):1–12.
  • Singh R, Das Mukherjee M, Sumana G, Gupta RK, Sood S, Malhotra BD. Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sens Actuator B Chem. 2014;197:385–404.
  • Qureshi A, Kang WP, Davidson JL, Gurbuz Y. Review on carbon- derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mat. 2009;18(12):1401–1420.
  • Cosnier S, Mailley P. Recent advances in DNA sensors. Analyst. 2008;133(8):984–991.
  • Dey RS, Raj CR. Enzyme-integrated cholesterol biosensing scaffold based on in situ synthesized reduced graphene oxide and dendritic Pd nanostructure. Biosens Bioelectron. 2014;62:357–364.
  • Newman JD, Turner AP. Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron. 2005;20(12):2435–2453.
  • Nidzworski D, Pranszke P, Grudniewska M, Krol E, Gromadzka B. Universal biosensor for detection of influenza virus. Biosens Bioelectron. 2014;59:239–242.
  • Muti M, Kuralay F, Erdem A, Abaci S, Yumak T, Sinag A. Tin oxide nanoparticles-polymer modified single-use sensors for electrochemical monitoring of label-free DNA hybridization. Talanta. 2010;82(5):1680–1686.
  • Aydinlik S, Ozkan-Ariksoysal D, Kara P, Sayiner AA, Ozsoz M. A nucleic acid-based electrochemical biosensor for the detection of influenza B virus from PCR samples using gold nanoparticle-adsorbed disposable graphite electrode and Meldola’s blue as an intercalator. Anal Meth. 2011;3(7):1607–1614.
  • Grabowska I, Stachyra A, Gora-Sochacka A, et al. DNA probe modified with 3-iron bis(dicarbollide) for electrochemical determination of DNA sequence of Avian Influenza Virus H5N1. Biosens Bioelectron. 2014;51:170–176.
  • Xu XD, Lin BB, Feng J, et al. Biological glucose metabolism regulated peptide self-assembly as a simple visual biosensor for glucose detection. Macromol Rapid Commun. 2012;33(5):426–431.
  • Gramsbergen JB, Leegsma-Vogt G, Venema K, Noraberg J, Korf J. Quantitative on-line monitoring of hippocampus glucose and lactate metabolism in organotypic cultures using biosensor technology. J Neurochem. 2003;85(2):399–408.
  • Inci F, Tokel O, Wang SQ, et al. Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. ACS Nano. 2013;7(6):4733–4745.
  • Carrascosa LG, Moreno M, Alvarez M, Lechuga LM. Nanomechanical biosensors: a new sensing tool. Trac-Trends Anal Chem. 2006;25(3):196–206.
  • Esfandyarpour R, Esfandyarpour H, Harris JS, Davis RW. Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device. Nanotechnology. 2013;24(46):465301.
  • Hu AZ, Colella M, Tam JS, Rappaport R, Cheng SM. Simultaneous detection, subgrouping, and quantitation of respiratory syncytial virus A and B by real-time PCR. J Clin Microbiol. 2003;41(1):149–154.
  • Gueudin M, Vabret A, Petitjean J, Gouarin S, Brouard J, Freymuth F. Quantitation of respiratory syncytial virus RNA in nasal aspirates of children by real-time RT-PCR assay. J Virol Meth. 2003;109(1):39–45.
  • Camargos MF, Rajao DS, Leite RC, Stancek D, Heinemann MB, Reis JK. Genetic variation of bovine leukemia virus (BLV) after replication in cell culture and experimental animals. Genet Mol Res. 2014;13(1):1717–1723.
  • Atkins GJ, Balluz IM, Glasgow GM, et al. Analysis of the molecular-basis of neuropathogenesis of RNA viruses in experimental-animals – relevance for human-disease. Neuropathol Appl Neurobiol. 1994;20(2):91–102.
  • Wang Y-z, Wei J-b, Zhang G-q, Wang W-w, Ma Y, Shi Y-z. Adaptive passage of rabies virus in chicken embryo fibroblasts. Chin J Biol. 2012;25(6):669–671.
  • Qasim M, Lim DJ, Park H, Na D. Nanotechnology for diagnosis and treatment of infectious diseases. J Nanosci Nanotechnol. 2014;14(10):7374–7387.
  • Sun W, Jiao K, Zhang SS. Electrochemical ELISA for the detection of cucumber mosaic virus using o-pheneylenediamine as substrate. Talanta. 2001;55(6):1211–1218.
  • Cella LN, Chen W, Myung NV, Mulchandani A. Single-walled carbon nanotube-based chemiresistive affinity biosensors for small molecules: ultrasensitive glucose detection. J Am Chem Soc. 2010;132(14):5024.
  • Chartuprayoon N, Rheem Y, Ng JCK, Nam J, Chen W, Myung NV. Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Meth. 2013;5(14):3497–3502.
  • Oh DY, Barr IG, Hurt AC. A novel video tracking method to evaluate the effect of influenza infection and antiviral treatment on ferret activity. Plos One. 2015;10(3).
  • Parkinson G, Pejcic B. Using Biosensors to Detect Emerging Infectious Diseases. Perth, Australia: Nanochemistry Research Institute, Curtin University of Technology Perth; 2005.
  • Fuji-Keizai USA. Biosensor Market, R&D Applications and Commercial Implication: WS and worldwide. New York, NY: Fuji-Keizai USA; 2004.
  • Lam Dai T, Binh Hai N, Nguyen Van H, Hoang Vinh T, Huy Le N, Phuc Xuan N. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Mater Sci Eng C. 2011;31(2):477–485.
  • Solanki PR, Patel MK, Kaushik A, Pandey MK, Kotnala RK, Malhotra BD. Sol-gel derived nanostructured metal oxide platform for bacterial detection. Electroanalysis. 2011;23(11):2699–2708.
  • Lazerges M, Bedioui F. Analysis of the evolution of the detection limits of electrochemical DNA biosensors. Anal Bioanal Chem. 2013;405(11):3705–3714.
  • Krejcova L, Nejdl L, Hynek D, et al. Beads-based electrochemical assay for the detection of influenza hemagglutinin labeled with CdTe quantum dots. Molecules. 2013;18(12):15573–15586.
  • Esseghaier C, Ng A, Zourob M. A novel and rapid assay for HIV-1 protease detection using magnetic bead mediation. Biosens Bioelectron. 2013;41:335–341.
  • Lin Y-Y, Wang J, Liu G, Wu H, Wai CM, Lin Y. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens Bioelectron. 2008;23(11):1659–1665.
  • Yao CY, Fu WL. Biosensors for hepatitis B virus detection. World J Gastroenterol. 2014;20(35):12485–12492.
  • Gao WH, Zhang A, Chen YS, et al. A novel probe density controllable electrochemiluminescence biosensor for ultra-sensitive detection of Hg2+ based on DNA hybridization optimization with gold nanoparticles array patterned self-assembly platform. Biosens Bioelectron. 2013;49:139–145.
  • Jenison R, Rihanek M, Polisky B. Use of a thin film biosensor for rapid visual detection of PCR products in a multiplex format. Biosens Bioelectron. 2001;16(9–12):757–763.
  • Iyer MA, Oza G, Velumani S, et al. Scanning fluorescence-based ultrasensitive detection of dengue viral DNA on ZnO thin films. Sens Actuator B Chem. 2014;202:1338–1348.
  • Palecek E, Bartosik M. Electrochemistry of nucleic acids. Chem Rev. 2012;112(6):3427–3481.
  • Malecka K, Michalczuk L, Radecka H, Radecki J. Ion-channel genosensor for the detection of specific DNA sequences derived from plum pox virus in plant extracts. Sensors. 2014;14(10):18611–18624.
  • Zaytseva NV, Montagna RA, Lee EM, Baeumner AJ. Multi-analyte single-membrane biosensor for the serotype-specific detection of Dengue virus. Anal Bioanal Chem. 2004;380(1):46–53.
  • Kumar H, Rani R. Development of biosensors for the detection of biological warfare agents: its issues and challenges. Sci Prog. 2013;96(3):294–308.
  • Castro ACH, Franca EG, de Paula LF, et al. Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus. Appl Surf Sci. 2014;314:273–279.
  • Riedel T, Rodriguez-Emmenegger C, de los Santos Pereira A, et al. Diagnosis of Epstein-Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosens Bioelectron. 2014;55:278–284.
  • Deng JJ, Toh CS. Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of Dengue virus. Sensors. 2013;13(6):7774–7785.
  • Chan YY, Chua AL, Lim BH, Pattabiraman L, Ravichandran M, inventors; UNIV SAINS MALAYSIA USM (UYSA-Non-standard), assignee. Lateral flow device for detecting target nucleic acid sequence, comprises a conjugates region containing a detector conjugate which binds to a hapten label of the target nucleic acid sequence and is provided with a signaling label. United States patent US WO2011112068-A1. September 15, 2011.
  • Kugel V, Ji HF. Nanopillars for sensing. J Nanosci Nanotechnol. 2014;14(9):6469–6477.
  • Sharma S, Madou M. A new approach to gas sensing with nanotechnology. Philos Trans A Math Phys Eng Sci. 2012;370(1967):2448–2473.
  • Caygill RL, Blair GE, Millner PA. A review on viral biosensors to detect human pathogens. Anal Chim Acta. 2010;681(1–2):8–15.
  • Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A. Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev. 2013;42(22):8733–8768.
  • Ueda H, Dong J. From fluorescence polarization to Quenchbody: recent progress in fluorescent reagentless biosensors based on antibody and other binding proteins. Biochim Biophys Acta. 2014;1844(11):1951–1959.
  • Urrego LF, Lopez DI, Ramirez KA, Ramirez C, Osma JF. Biomicrosystem design and fabrication for the human papilloma virus 16 detection. Sens Actuator B Chem. 2015;207:97–104.
  • Dover JE, Hwang GM, Mullen EH, Prorok BC, Suh S-J. Recent advances in peptide probe-based biosensors for detection of infectious agents. J Microbiol Meth. 2009;78(1):10–19.
  • Buchapudi KR, Huang X, Yang X, Ji H-F, Thundat T. Microcantilever biosensors for chemicals and bioorganisms. Analyst. 2011;136(8):1539–1556.
  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–1136.
  • Wang SQ, Humphreys ES, Chung SY, et al. Peptides with selective affinity for carbon nanotubes. Nat Mater. 2003;2(3):196–200.
  • Su W, Cho M, Nam J-D, Choe W-S, Lee Y. Highly sensitive electrochemical lead ion sensor harnessing peptide probe molecules on porous gold electrodes. Biosens Bioelectron. 2013;48:263–269.
  • Pavan S, Berti F. Short peptides as biosensor transducers. Anal Bioanal Chem. 2012;402(10):3055–3070.
  • Chabre YM, Roy R. Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chem Soc Rev. 2013;42(11):4657–4708.
  • Whitcombe MJ. Molecularly imprinted polymers smart hydrogel crystal gardens. Nat Chem. 2011;3(9):657–658.
  • Karimian N, Turner APF, Tiwari A. Electrochemical evaluation of troponin T imprinted polymer receptor. Biosens Bioelectron. 2014;59:160–165.
  • Mukundan H, Anderson AS, Grace WK, et al. Waveguide-based biosensors for pathogen detection. Sensors. 2009;9(7):5783–5809.
  • Wang XH, Li YA, Wang HF, et al. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens Bioelectron. 2010;26(2):404–410.
  • Lu XC, Dong X, Zhang KY, Han XW, Fang X, Zhang YZ. A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. Analyst. 2013;138(2):642–650.
  • Tripp RA, Dluhy RA, Zhao YP. Novel nanostructures for SERS biosensing. Nano Today. 2008;3(3–4):31–37.
  • Li M, Cushing SK, Liang HY, Suri S, Ma DL, Wu NQ. Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA. Anal Chem. 2013;85(4):2072–2078.
  • Iost RM, Madurro JM, Brito-Madurro AG, Nantes IL, Caseli L, Crespilho FN. Strategies of nano-manipulation for application in electrochemical biosensors. Int J Electrochem Sci. 2011;6(7):2965–2997.
  • Wang RH, Li YB. Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosens Bioelectron. 2013;42:148–155.
  • Dultsev FN, Tronin AV. Rapid sensing of hepatitis B virus using QCM in the thickness shear mode. Sens Actuators B Chem. 2015;216:1–5.
  • Timurdogan E, Alaca BE, Kavakli IH, Urey H. MEMS biosensor for detection of hepatitis A and C viruses in serum. Biosens Bioelectron. 2011;28(1):189–194.
  • He JH, Sun SQ, Ye JS, Lim TM. Self-assembly carbon nanotubes on cantilever biosensor for sensitivity enhancement. Int Mems Conf. 2006;34:423–428.
  • Li F, Feng Y, Dong PJ, Tang B. Gold nanoparticles modified electrode via a mercapto-diazoaminobenzene monolayer and its development in DNA electrochemical biosensor. Biosens Bioelectron. 2010;25(9):2084–2088.
  • Luo X, Lee TM-H, Hsing IM. Immobilization-free sequence-specific electrochemical detection of DNA using ferrocene-labeled peptide nucleic acid. Anal Chem. 2008;80(19):7341–7346.
  • Adam V, Huska D, Hubalek J, Kizek R. Easy to use and rapid isolation and detection of a viral nucleic acid by using paramagnetic microparticles and carbon nanotubes-based screen-printed electrodes. Microfluidics Nanofluidics. 2010;8(3):329–339.
  • Xue D, Elliott CM, Gong P, Grainger DW, Bignozzi CA, Caramori S. Indirect electrochemical sensing of DNA hybridization based on the catalytic oxidation of cobalt (II). J Am Chem Soc. 2007;129(7):1854.
  • Uliana CV, Tognolli JO, Yamanaka H. Application of factorial design experiments to the development of a disposable amperometric DNA biosensor. Electroanalysis. 2011;23(11):2607–2615.
  • Zhu X, Ai S, Chen Q, Yin H, Xu J. Label-free electrochemical detection of avian influenza virus genotype utilizing multi-walled carbon nanotubes-cobalt phthalocyanine-PAMAM nanocomposite modified glassy carbon electrode. Electrochem Commun. 2009;11(7):1543–1546.
  • Liu F, Choi KS, Park TJ, Lee SY, Seo TS. Graphene-based electrochemical biosensor for pathogenic virus detection. BioChip J. 2011;5(2):123–128.
  • Liu YT, Deng J, Xiao XL, et al. Electrochemical sensor based on a poly(para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochim Acta. 2011;56(12):4595–4602.
  • Krejcova L, Huska D, Hynek D, et al. Using of paramagnetic microparticles and quantum dots for isolation and electrochemical detection of influenza viruses’ specific nucleic acids. Int J Electrochem Sci. 2013;8(1):689–702.
  • Silvestrini M, Fruk L, Moretto LM, Ugo P. Detection of DNA hybridization by methylene blue electrochemistry at activated nanoelectrode ensembles. J Nanosci Nanotechnol. 2015;15(5):3437–3442.
  • Kamikawa TL, Mikolajczyk MG, Kennedy M, et al. Nanoparticle-based biosensor for the detection of emerging pandemic influenza strains. Biosens Bioelectron. 2010;26(4):1346–1352.
  • Silva MMS, Dias A, Cordeiro MT, Marques E, Goulart MOF, Dutra RF. A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein. Talanta. 2014;128:505–510.
  • Chung D-J, Kim K-C, Choi S-H. Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection. Appl Surf Sci. 2011;257(22):9390–9396.
  • Tam PD, Hieu NV, Chien ND, Le A-T, Tuan MA. DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. J Immunol Meth. 2009;350(1–2):118–124.
  • Hughes MP, Morgan H, Rixon FJ, Burt JPH, Pethig R. Manipulation of herpes simplex virus type 1 by dielectrophoresis. Biochim Biophys Acta. 1998;1425(1):119–126.
  • Wang R, Lin J, Lassiter K, et al. Evaluation study of a portable impedance biosensor for detection of avian influenza virus. J Virol Meth. 2011;178(1–2):52–58.
  • Lin JH, Lum J, Wang RH, et al. A portable impedance biosensor instrument for rapid detection of avian influenza virus. Sensors. Piscataway, New Jersey: IEEE; 2010:1558–1563.
  • Chang H, Wang Y, Li J. Electrochemical DNA sensors: from nanoconstruction to biosensing. Curr Org Chem. 2011;15(4):506–517.
  • Lin CS, Chen YY, Cai ZX, Luo F, Wang YR, Chen X. An electrochemical biosensor for the sensitive detection of specific DNA based on a dual-enzyme assisted amplification. Electrochim Acta. 2014;147:785–790.
  • Xu MD, Zhuang JY, Chen X, Chen GA, Tang DP. A difunctional DNA-AuNP dendrimer coupling DNAzyme with intercalators for femtomolar detection of nucleic acids. Chem Commun. 2013;49(66):7304–7306.
  • Sahoo P, Suresh S, Dhara S, Saini G, Rangarajan S, Tyagi AK. Direct label free ultrasensitive impedimetric DNA biosensor using dendrimer functionalized GaN nanowires. Biosens Bioelectron. 2013;44:164–170.
  • Vlachova J, Tmejova K, Kopel P, et al. A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode. Sensors (Basel, Switzerland). 2015;15(2):2438–2452.
  • Trefulka M, Ferreyra N, Ostatna V, Fojta M, Rivas G, Palecek E. Voltammetry of osmium end-labeled oligodeoxynucleotides at carbon, mercury, and gold electrodes. Electroanalysis. 2007;19(12):1334–1338.
  • Meng X, Xu M, Zhu J, Yin H, Ai S. Fabrication of DNA electrochemical biosensor based on gold nanoparticles, locked nucleic acid modified hairpin DNA and enzymatic signal amplification. Electrochim Acta. 2012;71:233–238.
  • Palecek E, Ostatna V, Pechan Z. Fifty five years of nucleic acid electrochemistry. Chem Listy. 2014;108(5):490–499.
  • Zari N, Amine A, Ennaji MM. Label-free DNA biosensor for electrochemical detection of short DNA sequences related to human papilloma virus. Anal Lett. 2009;42(3):519–535.
  • Pournaghi-Azar MH, Ahour F, Hejazi MS. Differential pulse voltammetric detection of hepatitis C virus 1a oligonucleotide chain by a label-free electrochemical DNA hybridization biosensor using consensus sequence of hepatitis C virus 1a probe on the pencil graphite electrode. Electroanalysis. 2009;21(16):1822–1828.
  • Huang K-J, Liu Y-J, Zhang J-Z. Aptamer-based electrochemical assay of 17 beta-estradiol using a glassy carbon electrode modified with copper sulfide nanosheets and gold nanoparticles, and applying enzyme-based signal amplification. Microchim Acta. 2015;182(1–2):409–417.
  • Yamanaka K, Saito M, Kondoh K, et al. Rapid detection for primary screening of influenza A virus: microfluidic RT-PCR chip and electrochemical DNA sensor. Analyst. 2011;136(10):2064–2068.
  • Peng H-P, Hu Y, Liu P, et al. Label-free electrochemical DNA biosensor for rapid detection of mutidrug resistance gene based on Au nanoparticles/toluidine blue-graphene oxide nanocomposites. Sens Actuator B Chem. 2015;207:269–276.
  • Wang J, Shi A, Fang X, Han X, Zhang Y. An ultrasensitive supersandwich electrochemical DNA biosensor based on gold nanoparticles decorated reduced graphene oxide. Anal Biochem. 2015;469:71–75.
  • Bi S, Cui Y, Dong Y, Zhang N. Target-induced self-assembly of DNA nanomachine on magnetic particle for multi-amplified biosensing of nucleic acid, protein, and cancer cell. Biosens Bioelectron. 2014;53:207–213.
  • Krejcova L, Hynek D, Kopel P, et al. Development of a magnetic electrochemical bar code array for point mutation detection in the H5N1 neuraminidase gene. Viruses Basel. 2013;5(7):1719–1739.
  • Qiu W, Xu H, Takalkar S, et al. Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosens Bioelectron. 2015;64:367–372.
  • Senapati S, Slouka Z, Shah SS, et al. An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon. Biosens Bioelectron. 2014;60:92–100.
  • Gao AR, Zou NL, Dai PF, et al. Signal-to-noise ratio enhancement of silicon nanowires biosensor with rolling circle amplification. Nano Lett. 2013;13(9):4123–4130.
  • Shi L, Chu ZY, Dong XL, Jin WQ, Dempsey E. A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition. Nanoscale. 2013;5(21):10219–10225.
  • Rai V, Hapuarachchi HC, Ng LC, Soh SH, Leo YS, Toh CS. Ultrasensitive cDNA detection of dengue virus RNA using electrochemical nanoporous membrane-based biosensor. Plos One. 2012;7(8).
  • Ruan SP, Li ZJ, Qi HL, Gao Q, Zhang CX. Label-free supersandwich electrogenerated chemiluminescence biosensor for the determination of the HIV gene. Microchim Acta. 2014;181(11–12):1293–1300.
  • Jampasa S, Wonsawat W, Rodthongkum N, et al. Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes. Biosens Bioelectron. 2014;54:428–434.
  • Ahour F, Pournaghi-Azar MH, Alipour E, Hejazi MS. Detection and discrimination of recombinant plasmid encoding hepatitis C virus core/E1 gene based on PNA and double-stranded DNA hybridization. Biosens Bioelectron. 2013;45:287–291.
  • Liu G, Lao RJ, Xu L, et al. Single-nucleotide polymorphism genotyping using a novel multiplexed electrochemical biosensor with nonfouling surface. Biosens Bioelectron. 2013;42:516–521.
  • Qi XW, Gao HW, Zhang YY, Wang XZ, Chen Y, Sun W. Electrochemical DNA biosensor with chitosan-Co3O4 nanorod-graphene composite for the sensitive detection of staphylococcus aureus nuc gene sequence. Bioelectrochemistry. 2012;88:42–47.
  • Chen X, Hong CY, Lin YH, Chen JH, Chen GN, Yang HH. Enzyme-free and label-free ultrasensitive electrochemical detection of human immunodeficiency virus DNA in biological samples based on long-range self-assembled DNA nanostructures. Anal Chem. 2012;84(19):8277–8283.
  • Chebil S, Macauley N, Hianik T, Korri-Youssoufi H. Multiwalled carbon nanotubes modified by NTA-copper complex for label-free electrochemical immunosensor detection. Electroanalysis. 2013;25(3):636–643.
  • Rivas GA, Rubianes MD, Rodriguez MC, et al. Carbon nanotubes for electrochemical biosensing. Talanta. 2007;74(3):291–307.
  • Alipour E, Ghourchian H, Boutorabi SM. Gold nanoparticle based capacitive immunosensor for detection of hepatitis B surface antigen. Anal Meth. 2013;5(17):4448–4453.
  • Miodek A, Sauriat-Dorizon H, Chevalier C, Delmas B, Vidic J, Korri-Youssoufi H. Direct electrochemical detection of PB1-F2 protein of influenza A virus in infected cells. Biosens Bioelectron. 2014;59:6–13.
  • Miodek A, Vidic J, Sauriat-Dorizon H, et al. Electrochemical detection of the oligomerization of PB1-F2 influenza A virus protein in infected cells. Anal Chem. 2014;86(18):9098–9105.
  • Hong SA, Kwon J, Kim D, Yang S. A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus. Biosens Bioelectron. 2015;64:338–344.
  • Cavalcanti IT, Guedes MIF, Sotomayor M, Yamanaka H, Dutra RF. A label-free immunosensor based on recordable compact disk chip for early diagnostic of the dengue virus infection. Biochem Eng J. 2012;67:225–230.
  • Xie ZX, Huang JL, Luo SS, et al. Ultrasensitive electrochemical immunoassay for avian influenza subtype H5 using nanocomposite. Plos One. 2014;9(4):e94685.
  • Braustein HE, Braustein IE. Real time diagnostic point of care by amperometric immuno-biosensor kit by flow technology. Microfluidic Mems/Nems Sens Dev. 2014;58(40):1–17.
  • Huang CW, Huang YJ, Yen PW, et al. A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology. Lab Chip. 2013;13(22):4451–4459.
  • Luo YL, Nartker S, Miller H, et al. Surface functionalization of electrospun nanofibers for detecting E. coli O157:H7 and BVDV cells in a direct-charge transfer biosensor. Biosens Bioelectron. 2010;26(4):1612–1617.
  • Wang R, Wang Y, Lassiter K, et al. Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1. Talanta. 2009;79(2):159–164.
  • Amano Y, Cheng Q. Detection of influenza virus: traditional approaches and development of biosensors. Anal Bioanal Chem. 2005;381(1):156–164.
  • Jiang X, Spencer MG. Electrochemical impedance biosensor with electrode pixels for precise counting of CD4(+) cells: a microchip for quantitative diagnosis of HIV infection status of AIDS patients. Biosens Bioelectron. 2010;25(7):1622–1628.
  • Ren R, Leng CC, Zhang SS. A chronocoulometric DNA sensor based on screen-printed electrode doped with ionic liquid and polyaniline nanotubes. Biosens Bioelectron. 2010;25(9):2089–2094.
  • Fang XQ, Tan OK, Tse MS, Ooi EE. A label-free immunosensor for diagnosis of dengue infection with simple electrical measurements. Biosens Bioelectron. 2010;25(5):1137–1142.
  • Hnaien M, Diouani MF, Helali S, et al. Immobilization of specific antibody on functionalized gold electrode for rabies virus detection by electrochemical impedance spectroscopy. Biochem Eng J. 2008;39(3):443–449.
  • Hejazi MS, Pournaghi-Azar MH, Ahour F. Electrochemical detection of short sequences of hepatitis C 3a virus using a peptide nucleic acid-assembled gold electrode. Anal Biochem. 2010;399(1):118–124.
  • Malecka K, Grabowska I, Radecki J, et al. Electrochemical detection of avian influenza virus genotype using amino-ssDNA probe modified gold electrodes. Electroanalysis. 2013;25(8):1871–1878.
  • John SV, Rotherham LS, Khati M, Mamba BB, Arotiba OA. Towards HIV detection: novel poly(propylene imine) dendrimer-streptavidin platform for electrochemical DNA and gp120 aptamer biosensors. Int J Electrochem Sci. 2014;9(10):5425–5437.
  • Rickert J, Gopel W, Beck W, Jung G, Heiduschka P. A ‘mixed’ self-assembled monolayer for an impedimetric immunosensor. Biosens Bioelectron. 1996;11(8):757–768.
  • Berggren C, Bjarnason B, Johansson G. Capacitive biosensors. Electroanalysis. 2001;13(3):173–180.
  • Novakova Z, Orinakova R, Orinak A, Hvizdos P, Fedorkova AS. Elimination voltammetry as a new method for studying the SAM formation. Int J Electrochem Sci. 2014;9(7):3846–3863.
  • Paulo TDF, Abruna HD, Diogenes ICN. Thermodynamic, kinetic, surface pK(a), and structural aspects of self-assembled monolayers of thio compounds on gold. Langmuir. 2012;28(51):17825–17831.
  • Sartore L, Sassi A, Barbaglio M. Properties of carbon-black composite vapour detectors based on multifunctional polymers. J Balk Tribol Assoc. 2010;16(4):498–509.
  • Zeng H, Jiang Y, Xie G, Yu J. Polymer coated QCM sensor with modified electrode for the detection of DDVP. Sens Actuator B Chem. 2007;122(1):1–6.
  • Lin C-C, Chen L-C, Huang C-H, Ding S-J, Chang C-C, Chang H-C. Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection. J Electroanal Chem. 2008;619:39–45.
  • Park J-Y, Park S-M. DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors. 2009;9(12):9513–9532.
  • Mashhadizadeh MH, Talemi RP. A highly sensitive and selective hepatitis B DNA biosensor using gold nanoparticle electrodeposition on an Au electrode and mercaptobenzaldehyde. Anal Meth. 2014;6(22):8956–8964.
  • Tung YT, Wu MF, Wang GJ, Hsieh SL. Nanostructured electrochemical biosensor for th0065 detection of the weak binding between the dengue virus and the CLEC5A receptor. Nanomed Nanotechnol Biol Med. 2014;10(6):1335–1341.
  • Mishra NN, Retterer S, Zieziulewicz TJ, et al. On-chip micro-biosensor for the detection of human CD4(+) cells based on AC impedance and optical analysis. Biosens Bioelectron. 2005;21(5):696–704.
  • Kiilerich-Pedersen K, Dapra J, Cherre S, Rozlosnik N. High sensitivity point-of-care device for direct virus diagnostics. Biosens Bioelectron. 2013;49:374–379.
  • Jarocka U, Sawicka R, Gora-Sochacka A, et al. An immunosensor based on antibody binding fragments attached to gold nanoparticles for the detection of peptides derived from avian influenza hemagglutinin H5. Sensors. 2014;14(9):15714–15728.
  • Wang RH, Wang Y, Lassiter K, et al. Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1. Talanta. 2009;79(2):159–164.
  • Xu S. Electromechanical biosensors for pathogen detection. Microchim Acta. 2012;178(3–4):245–260.
  • Mecea VM. From quartz crystal microbalance to fundamental principles of mass measurements. Anal Lett. 2005;38(5):753–767.
  • Sauerbrey G. Use of a quartz vibrator for weighing thin layers on a microbalance. Z Phys. 1959;155(1959):206–222.
  • Vaughan RD, O’Sullivan CK, Guilbault GG. Sulfur based self-assembled monolayers (SAM’s) on piezoelectric crystals for immunosensor development. Fresenius J Anal Chem. 1999;364(1–2):54–57.
  • Kanazawa KK, Gordon JG. Frequency of a quartz microbalance in contact with liquid. Anal Chem. 1985;57(8):1770–1771.
  • Skladal P, Riccardi CD, Yamanaka H, da Costa PI. Piezoelectric biosensors for real-time monitoring of hybridization and detection of hepatitis C virus. J Virol Meth. 2004;117(2):145–151.
  • Li D, Wang J, Wang R, et al. A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1. Biosens Bioelectron. 2011;26(10):4146–4154.
  • Lee YG, Chang KS. Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid. Talanta. 2005;65(5):1335–1342.
  • Chu X, Zhao ZL, Shen GL, Yu RQ. Quartz crystal microbalance immunoassay with dendritic amplification using colloidal gold immunocomplex. Sens Actuator B Chem. 2006;114(2):696–704.
  • Kim YK, Lim SI, Choi S, Cho IS, Park EH, An DJ. A novel assay for detecting canine parvovirus using a quartz crystal microbalance biosensor. J Virol Methods. 2015;219:23–27.
  • Zhou XD, Liu LJ, Hu M, Wang LL, Hu JM. Detection of hepatitis B virus by piezoelectric biosensor. J Pharmaceut Biomed Anal. 2002;27(1–2):341–345.
  • Dell’Atti D, Zavaglia M, Tombelli S, et al. Development of combined DNA-based piezoelectric biosensors for the simultaneous detection and genotyping of high risk human papilloma virus strains. Clin Chim Acta. 2007;383(1–2):140–146.
  • Hong S-R, Jeong H-D, Hong S. QCM DNA biosensor for the diagnosis of a fish pathogenic virus VHSV. Talanta. 2010;82(3):899–903.
  • Yao CY, Wang YX, Fu WL. HBV DNA detection by RCA-QCM biosensor. Chem J Chin Univ. 2014;35(8):1635–1639.
  • Owen TW, Al-Kaysi RO, Bardeen CJ, Cheng Q. Microgravimetric immunosensor for direct detection of aerosolized influenza A virus particles. Sens Actuator B Chem. 2007;126(2):691–699.
  • Hewa TMP, Tannock GA, Mainwaring DE, Harrison S, Fecondo JV. The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. J Virol Meth. 2009;162(1–2):14–21.
  • Wangchareansak T, Sangma C, Ngernmeesri P, Thitithanyanont A, Lieberzeit PA. Self-assembled glucosamine monolayers as biomimetic receptors for detecting WGA lectin and influenza virus with a quartz crystal microbalance. Anal Bioanal Chem. 2013;405(20):6471–6478.
  • Lu CH, Zhang Y, Tang SF, et al. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens Bioelectron. 2012;31(1):439–444.
  • Chen L, Huang J, Lin C, Tai D, Wu T, inventors; TAI D (TAID-Individual), assignee. New method for the detection of dengue virus NS1 protein on gold electrode by using immunosensor. United States patent US TW200519371-A. June 16, 2005.
  • Liu YC, Wang CM, Hsiung KP, Huang CJ. Evaluation and application of conducting polymer entrapment on quartz crystal microbalance in flow injection immunoassay. Biosens Bioelectron. 2003;18(7):937–942.
  • Sin MLY, Mach KE, Wong PK, Liao JC. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn. 2014;14(2):225–244.
  • Kobayashi M, Kikuchi N, Sato A. Optical tomography of fluorophores in dense scattering media based on ultrasound-enhanced chemiluminescence. Appl Phys Lett. 2015;106(2):21103–21103.
  • Tansi FL, Ruger R, Rabenhold M, Steiniger F, Fahr A, Hilger I. Fluorescence-quenching of a liposomal-encapsulated near- infrared fluorophore as a tool for in vivo optical imaging. J Vis Exp. 2015(95):e52136.
  • Mason C, Markusen JF, Town MA, Dunnill P, Wang RK. Doppler optical coherence tomography for measuring flow in engineered tissue. Biosens Bioelectron. 2004;20(3):414–423.
  • Obaton AF, Sanogo Y, Lautru J, Lievre M, Durocher JN, Dubard J. Development of a new optical reference technique in the field of biology. IEEE Trans Instrum Meas. 2013;62(4):837–844.
  • Ivers SN, Baranov SA, Sherlock T, et al. Depth-resolved imaging and detection of micro-retroreflectors within biological tissue using optical coherence tomography. Biomed Opt Express. 2010;1(2):367–377.
  • Trantum JR, Baglia ML, Eagleton ZE, Mernaugh RL, Haselton FR. Biosensor design based on Marangoni flow in an evaporating drop. Lab Chip. 2014;14(2):315–324.
  • Lee CK, Lin CW, Lin SM, et al. From an integrated biochip detection system to a defensive weapon against the SARS-CoV virus: OBMorph. In: Taylor DP, Liu J, McIlroy D, et al, editors. Nanoengineered Assemblies and Advanced Micro/Nanosystems. Vol 820. Warrendale, PA: Materials Research Society; 2004:249–260.
  • Pires NMM, Dong T, Hanke U, Hoivik N. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors. 2014;14(8):15458–15479.
  • Kim MG, Shon Y, Lee J, et al. Double stranded aptamer-anchored reduced graphene oxide as target-specific nano detector. Biomaterials. 2014;35(9):2999–3004.
  • Padilla-Parra S, Matos PM, Kondo N, Marin M, Santos NC, Melikyan GB. Quantitative imaging of endosome acidification and single retrovirus fusion with distinct pools of early endosomes. Proc Natl Acad Sci U S A. 2012;109(43):17627–17632.
  • Rossi AM, Wang L, Reipa V, Murphy TE. Porous silicon biosensor for detection of viruses. Biosens Bioelectron. 2007;23(5):741–745.
  • Grepstad JO, Kaspar P, Johansen IR, Solgaard O, Sudbo A. Detection of single nano-defects in photonic crystals between crossed polarizers. Opt Express. 2013;21(25):31375–31389.
  • Yan RJ, Lynn NS, Kingry LC, et al. Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor. Appl Phys Lett. 2012;101(16).
  • Heinze BC, Song JY, Lee CH, Najam A, Yoon JY. Microfluidic immunosensor for rapid and sensitive detection of bovine viral diarrhea virus. Sens Actuator B Chem. 2009;138(2):491–496.
  • Strong LH, Hall DB, Edson CM, Hiep-hoa N, Whitt MA, Varadi G. Application of field-modulated birefringence and light scattering to biosensing. In: Miller BL, Fauchet PM, editors. Frontiers in Biological Detection: From Nanosensors to Systems III. Vol 7888. Bellingham WA: SPIE; 2011.
  • Luo SC, Sivashanmugan K, Liao JD, Yao CK, Peng HC. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens Bioelectron. 2014;61:232–240.
  • Halas NJ, Lal S, Chang W-S, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev. 2011;111(6):3913–3961.
  • Vendrell M, Maiti KK, Dhaliwal K, Chang Y-T. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013;31(4):249–257.
  • Lin YY, Liao JD, Ju YH, Chang CW, Shiau AL. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus. Nanotechnology. 2011;22(18):185308.
  • Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett. 2006;6(11):2630–2636.
  • Lin YY, Liao JD, Yang ML, Wu CL. Target-size embracing dimension for sensitive detection of viruses with various sizes and influenza virus strains. Biosens Bioelectron. 2012;35(1):447–451.
  • Chang C-W, Liao J-D, Shiau A-L, Yao C-K. Non-labeled virus detection using inverted triangular Au nano-cavities arrayed as SERS-active substrate. Sens Actuator B Chem. 2011;156(1):471–478.
  • Kaminska A, Witkowska E, Winkler K, Dziecielewski I, Weyher JL, Waluk J. Detection of hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens Bioelectron. 2015;66:461–467.
  • Lim D-K, Jeon K-S, Hwang J-H, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol. 2011;6(7):452–460.
  • Negri P, Chen G, Kage A, et al. Direct optical detection of viral nucleoprotein binding to an anti-influenza aptamer. Anal Chem. 2012;84(13):5501–5508.
  • Pang YF, Wang JF, Xiao R, Wang SQ. SERS molecular sentinel for the RNA genetic marker of PB1-F2 protein in highly pathogenic avian influenza (HPAI) virus. Biosens Bioelectron. 2014;61:460–465.
  • Nguyen B, Tanious FA, Wilson WD. Biosensor-surface plasmon resonance: quantitative analysis of small molecule-nucleic acid interactions. Methods. 2007;42(2):150–161.
  • Abbas A, Linman MJ, Cheng Q. New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens Bioelectron. 2011;26(5):1815–1824.
  • Pattnaik P. Surface plasmon resonance – applications in understanding receptor-ligand interaction. Appl Biochem Biotechnol. 2005;126(2):79–92.
  • Englebienne P, Van Hoonacker A, Verhas M. Surface plasmon resonance: principles, methods and applications in biomedical sciences. J Spectros. 2003;17(2–3):255–273.
  • Liu Y, Wilson WD.. Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection. In: Fox KR, editor. Drug-DNA Interaction Protocols. 2nd ed. Vol 613. New York, NY: Humana Press; 2010:1–23.
  • Sakao Y, Nakamura F, Ueno N, Hara M. Hybridization of oligonucleotide by using DNA self-assembled monolayer. Colloids Surf B Biointerfaces. 2005;40(3–4):149–152.
  • Aqua T, Naaman R, Daube SS. Controlling the adsorption and reactivity of DNA on gold. Langmuir. 2003;19(25):10573–10580.
  • Brockman JM, Frutos AG, Corn RM. A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging. J Am Chem Soc. 1999;121(35):8044–8051.
  • Burgener M, Sanger M, Candrian U. Synthesis of a stable and specific surface plasmon resonance biosensor surface employing covalently immobilized peptide nucleic acids. Bioconjugate Chem. 2000;11(6):749–754.
  • Lee C-Y, Nguyen P-CT, Grainger DW, Gamble LJ, Castner DG. Structure and DNA hybridization properties of mixed nucleic acid/maleimide-ethylene glycol monolayers. Anal Chem. 2007;79(12):4390–4400.
  • Ermini ML, Scarano S, Bini R, et al. A rational approach in probe design for nucleic acid-based biosensing. Biosens Bioelectron. 2011;26(12):4785–4790.
  • Jin W, Lin X, Lv S, Zhang Y, Jin Q, Mu Y. A DNA sensor based on surface plasmon resonance for apoptosis-associated genes detection. Biosens Bioelectron. 2009;24(5):1266–1269.
  • Yao X, Li X, Toledo F, et al. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal Biochem. 2006;354(2):220–228.
  • Sipova H, Zhang S, Dudley AM, Galas D, Wang K, Homola J. Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem. 2010;82(24):10110–10115.
  • Wang S, Yang H, Zhang H, et al. A surface plasmon resonance–based system to genotype human papillomavirus. Cancer Genet Cytogenet. 2010;200(2):100–105.
  • Kim SA, Kim SJ, Lee SH, et al. Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor. J Opt Soc Korea. 2009;13(3):392–397.
  • Teng J, Gu D, Xu Y, et al. Screening method for real-time detection of influenza-A virus in human throat swabs by surface plasmon resonance biosensor. In: Zhu R, editor. Medical Materials and Engineering. Vol 140. Dürnten, Switzerland: Trans Tech Publications; 2012:210–219.
  • Ritzefeld M, Sewald N. Real-time analysis of specific protein-DNA interactions with surface plasmon resonance. J Amino Acids. 2012;2012:816032–816032.
  • Smith EA, Erickson MG, Ulijasz AT, Weisblum B, Corn RM. Surface plasmon resonance imaging of transcription factor proteins: interactions of bacterial response regulators with DNA arrays on gold films. Langmuir. 2003;19(5):1486–1492.
  • Tsoi PY, Yang MS. Surface plasmon resonance study of the molecular recognition between polymerase and DNA containing various mismatches and conformational changes of DNA-protein complexes. Biosens Bioelectron. 2004;19(10):1209–1218.
  • Wolf LK, Gao Y, Georgiadis RM. Kinetic discrimination of sequence-specific DNA – drug binding measured by surface plasmon resonance imaging and comparison to solution-phase measurements. J Am Chem Soc. 2007;129(34):10503–10511.
  • Fisher RJ, Rein A, Fivash M, et al. Sequence-specific binding of human immunodeficiency virus type 1 nucleocapsid protein to short oligonucleotides. J Virol. 1998;72(3):1902–1909.
  • Baltzinger M, Sharma KK, Mely Y, Altschuh D. Dissecting the oligonucleotide binding properties of a disordered chaperone protein using surface plasmon resonance. Nucleic Acids Res. 2013;41(22):10414–10425.
  • Yang Y, Wang Q, Guo D. A novel strategy for analyzing RNA-protein interactions by surface plasmon resonance biosensor. Mol Biotechnol. 2008;40(1):87–93.
  • Xu J, Wan JY, Yang ST, et al. A surface plasmon resonance biosensor for direct detection of the rabies virus. Acta Vet BRNO. 2012;81(2):107–111.
  • Kumbhat S, Sharma K, Gehlot R, Solanki A, Joshi V. Surface plasmon resonance based immunosensor for serological diagnosis of dengue virus infection. J Pharmaceut Biomed Anal. 2010;52(2):255–259.
  • Zheng S, Kim D-K, Park TJ, Lee SJ, Lee SY. Label-free optical diagnosis of hepatitis B virus with genetically engineered fusion proteins. Talanta. 2010;82(2):803–809.
  • Vaisocherova H, Mrkvova K, Piliarik M, Jinoch P, Steinbachova M, Homola J. Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus. Biosens Bioelectron. 2007;22(6):1020–1026.
  • Wang R, Zhao J, Jiang T, et al. Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. J Virol Meth. 2013;189(2):362–369.
  • Bai H, Wang R, Hargis B, Lu H, Li Y. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors. 2012;12(9):12506–12518.
  • Mandenius C-F, Wang R, Aldén A, et al. Monitoring of influenza virus hemagglutinin in process samples using weak affinity ligands and surface plasmon resonance. Anal Chim Acta. 2008;623(1):66–75.
  • Suenaga E, Mizuno H, Penmetcha KKR. Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance. Biosens Bioelectron. 2012;32(1):195–201.
  • Faegh S, Jalili N, Sridhar S. A self-sensing piezoelectric microcantilever biosensor for detection of ultrasmall adsorbed masses: theory and experiments. Sensors. 2013;13(5):6089–6108.
  • Godin M, Tabard-Cossa V, Miyahara Y, et al. Cantilever-based sensing: the origin of surface stress and optimization strategies. Nanotechnology. 2010;21(7).
  • Hansen KM, Thundat T. Microcantilever biosensors. Methods. 2005;37(1):57–64.
  • Grogan C, Raiteri R, O’Connor GM, et al. Characterisation of an antibody coated microcantilever as a potential immuno-based biosensor. Biosens Bioelectron. 2002;17(3):201–207.
  • Fritz J, Baller MK, Lang HP, et al. Translating biomolecular recognition into nanomechanics. Science. 2000;288(5464):316–318.
  • Su M, Li SU, Dravid VP. Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett. 2003;82(20):3562–3564.
  • Bajwa N, Maldonado CJ, Thundat T, Passian A. Piezoresistive measurement of Swine H1N1 hemagglutinin peptide binding with microcantilever arrays. AIP Adv. 2014;4(3).
  • Xu D, Liu L, Guan J, et al. Label-free microcantilever-based immunosensors for highly sensitive determination of avian influenza virus H9. Microchim Acta. 2014;181(3–4):403–410.