1,044
Views
9
CrossRef citations to date
0
Altmetric
Review

Anti-Cancer and Other Biological Effects of a Dietary Compound 3,3′-Diindolylmethane Supplementation: A Systematic Review of Human Clinical Trials

Pages 123-137 | Published online: 04 Aug 2020

References

  • Johnson IT. Glucosinolates: bioavailability and importance to health. Int J Vitam Nutr Res. 2002;72(1):26–31. doi:10.1024/0300-9831.72.1.26
  • Anderton MJ, Manson MM, Verschoyle RD, et al. Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clin Cancer Res. 2004;10(15):5233–5241. doi:10.1158/1078-0432.CCR-04-0163
  • Bjeldanes LF, Kim JY, Grose KR, et al. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci U S A. 1991;88(21):9543–9547. doi:10.1073/pnas.88.21.9543
  • Chang Y-C, Riby J, Chang GH-F, et al. Cytostatic and antiestrogenic effects of 2-(indol-3-ylmethyl)-3, 3′-diindolylmethane, a major in vivo product of dietary indole-3-carbinol. Biochem Pharmacol. 1999;58(5):825–834. doi:10.1016/S0006-2952(99)00165-3
  • Chen I, McDougal A, Wang F, et al. Aryl hydrocarbon receptor-mediated antiestrogenic and antitumorigenic activity of diindolylmethane. Carcinogenesis. 1998;19(9):1631–1639. doi:10.1093/carcin/19.9.1631
  • Bradfield CA, Bjeldanes LF. High-performance liquid chromatographic analysis of anticarcinogenic indoles in Brassica oleracea. J Agric Food Chem. 1987;35(1):46–49. doi:10.1021/jf00073a010
  • Weng J-R, Tsai C-H, Kulp SK, et al. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett. 2008;262(2):153–163. doi:10.1016/j.canlet.2008.01.033
  • Ashok B, Chen YG, Liu X, et al. Multiple molecular targets of indole-3-carbinol, a chemopreventive anti-estrogen in breast cancer. Eur J Cancer Prev. 2002;11:S86–S93.
  • Auborn KJ, Fan S, Rosen EM, et al. Indole-3-carbinol is a negative regulator of estrogen. J Nutr. 2003;133(7):2470S–2475S. doi:10.1093/jn/133.7.2470S
  • Bradlow HL. Indole-3-carbinol as a chemoprotective agent in breast and prostate cancer. In Vivo. 2008;22(4):441–445.
  • Garikapaty VP, Ashok BT, Tadi K, et al. 3,3ʹ-Diindolylmethane downregulates pro-survival pathway in hormone independent prostate cancer. Biochem Biophys Res Commun. 2006;340(2):718–725. doi:10.1016/j.bbrc.2005.12.059
  • Li Y, Li X, Sarkar FH. Gene expression profiles of I3C- and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. Case Rep Med. 2003;133(4):1011–1019.
  • Sarkar FH, Li Y. Indole-3-carbinol and prostate cancer. J Nutr. 2004;134(12 Suppl):3493s–3498s. doi:10.1093/jn/134.12.3493S
  • Wortelboer HM, De Kruif CA, Van Iersel AAJ, et al. Acid reaction products of indole-3-carbinol and their effects on cytochrome P450 and Phase II enzymes in rat and monkey hepatocytes. Biochem Pharmacol. 1992;43(7):1439–1447. doi:10.1016/0006-2952(92)90200-3
  • Nho CW, Jeffery E. The synergistic upregulation of phase II detoxification enzymes by glucosinolate breakdown products in cruciferous vegetables. Toxicol Appl Pharmacol. 2001;174(2):146–152. doi:10.1006/taap.2001.9207
  • Abdelrahim M, Newman K, Vanderlaag K, et al. 3, 3′-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis. 2005;27(4):717–728. doi:10.1093/carcin/bgi270
  • Ge X, Yannai S, Rennert G, et al. 3, 3′-Diindolylmethane induces apoptosis in human cancer cells. Biochem Biophys Res Commun. 1996;228(1):153–158. doi:10.1006/bbrc.1996.1631
  • Nachshon-Kedmi M, Yannai S, Haj A, et al. Indole-3-carbinol and 3, 3′-diindolylmethane induce apoptosis in human prostate cancer cells. Food Chem Toxicol. 2003;41(6):745–752. doi:10.1016/S0278-6915(03)00004-8
  • Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science. 2000;289(5484):1508–1514. doi:10.1126/science.289.5484.1508
  • Yu T-Y, Pang W-J, Yang G-S. 3, 3′-Diindolylmethane increases bone mass by suppressing osteoclastic bone resorption in mice. J Pharmacol Sci. 2015;127(1):75–82. doi:10.1016/j.jphs.2014.11.006
  • Dong L, Xia S, Gao F, et al. 3, 3′-Diindolylmethane attenuates experimental arthritis and osteoclastogenesis. Biochem Pharmacol. 2010;79(5):715–721. doi:10.1016/j.bcp.2009.10.010
  • Katsuta T, Miyaji Y, Offit PA, et al. Treatment with quadrivalent human papillomavirus vaccine for juvenile-onset recurrent respiratory papillomatosis: case report and review of the literature. J Pediatric Infect Dis Soc. 2017;6(4):380–385. doi:10.1093/jpids/pix063
  • Zeligs MA. Diindolylmethane for the treatment of HPV infection. Google Patents. 2012
  • Wattenberg LW, Weng J-R, Tsai C-H, Kulp SK, Chen C-S. Effects of dietary constituents on the metabolism of chemical carcinogens. Cancer Res. 1975;35(11 Part 2):3326–3331.
  • Loub WD, Wattenberg LW, Davis DW. Aryl hydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. J Natl Cancer Inst. 1975;54(4):985–988.
  • Aggarwal BB, Ichikawa H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle. 2005;4(9):1201–1215. doi:10.4161/cc.4.9.1993
  • Stresser DM, Bailey GS, Williams DE, et al. The anticarcinogen 3,3ʹ-diindolylmethane is an inhibitor of cytochrome P-450. J Biochem Toxicol. 1995;10(4):191–201. doi:10.1002/jbt.2570100403
  • Dalessandri KM, Firestone GL, Fitch MD, et al. Pilot study: effect of 3,3ʹ-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancer. Nutr Cancer. 2004;50(2):161–167. doi:10.1207/s15327914nc5002_5
  • Le HT, Schaldach CM, Firestone GL, et al. Plant-derived 3,3ʹ-Diindolylmethane is a strong androgen antagonist in human prostate cancer cells. J Biol Chem. 2003;278(23):21136–21145. doi:10.1074/jbc.M300588200
  • Ambrosone CB, McCann SE, Freudenheim JL, et al. Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr. 2004;134(5):1134–1138. doi:10.1093/jn/134.5.1134
  • Higdon JV, Delage B, Williams DE, et al. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res. 2007;55(3):224–236. doi:10.1016/j.phrs.2007.01.009
  • Nachshon‐Kedmi M, Fares FA, Yannai S. Therapeutic activity of 3, 3′‐diindolylmethane on prostate cancer in an in vivo model. Prostate. 2004;61(2):153–160. doi:10.1002/pros.20092
  • Rahman KM, Banerjee S, Ali S, et al. 3,3ʹ-Diindolylmethane enhances taxotere-induced apoptosis in hormone-refractory prostate cancer cells through survivin down-regulation. Cancer Res. 2009;69(10):4468–4475. doi:10.1158/0008-5472.CAN-08-4423
  • Cho HJ, Park SY, Kim EJ, et al. 3, 3′‐diindolylmethane inhibits prostate cancer development in the transgenic adenocarcinoma mouse prostate model. Mol Carcinog. 2011;50(2):100–112. doi:10.1002/mc.20698
  • Wu T-Y, Jain MG, Hislop GT, et al. Epigenetic modifications of Nrf2 by 3, 3′-diindolylmethane in vitro in TRAMP C1 cell line and in vivo TRAMP prostate tumors. AAPS J. 2013;15(3):864–874. doi:10.1208/s12248-013-9493-3
  • Fares F, Azzam N, Appel B, et al. The potential efficacy of 3, 3′-diindolylmethane in prevention of prostate cancer development. Eur J Cancer Prev. 2010;19(3):199–203. doi:10.1097/CEJ.0b013e328333fbce
  • Bhuiyan MM, Li Y, Banerjee S, et al. Down-regulation of androgen receptor by 3, 3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in both hormone-sensitive LNCaP and insensitive C4-2B prostate cancer cells. Cancer Res. 2006;66(20):10064–10072. doi:10.1158/0008-5472.CAN-06-2011
  • Rahman KM, Ali S, Aboukameel A, et al. Inactivation of NF-kappaB by 3,3ʹ-diindolylmethane contributes to increased apoptosis induced by chemotherapeutic agent in breast cancer cells. Mol Cancer Ther. 2007;6(10):2757–2765. doi:10.1158/1535-7163.MCT-07-0336
  • Ahmad A, Ali S, Wang Z, et al. 3, 3′‐diindolylmethane enhances taxotere‐induced growth inhibition of breast cancer cells through downregulation of FoxM1. Int J Cancer. 2011;129(7):1781–1791. doi:10.1002/ijc.25839
  • Ali S, Banerjee S, Ahmad A, et al. Apoptosis-inducing effect of erlotinib is potentiated by 3,3ʹ-diindolylmethane in vitro and in vivo using an orthotopic model of pancreatic cancer. Mol Cancer Ther. 2008;7(6):1708–1719. doi:10.1158/1535-7163.MCT-08-0354
  • Banerjee S, Wang Z, Kong D, et al. 3, 3′-Diindolylmethane enhances chemosensitivity of multiple chemotherapeutic agents in pancreatic cancer. Cancer Res. 2009;69(13):5592–5600. doi:10.1158/0008-5472.CAN-09-0838
  • Kim YH, Kwon HS, Kim DH, et al. 3, 3′-diindolylmethane attenuates colonic inflammation and tumorigenesis in mice. Inflamm Bowel Dis. 2009;15(8):1164–1173. doi:10.1002/ibd.20917
  • Choi HJ, Park JHY. Induction of G1 and G2/M cell cycle arrests by the dietary compound 3, 3ʹ-diindolylmethane in HT-29 human colon cancer cells. BMC Gastroenterol. 2009;9(1):39. doi:10.1186/1471-230X-9-39
  • Bhatnagar N, Li X, Chen Y, et al. 3, 3′-diindolylmethane enhances the efficacy of butyrate in colon cancer prevention through down-regulation of survivin. Cancer Prev Res. 2009;2(6):581–589. doi:10.1158/1940-6207.CAPR-08-0142
  • Femia AP, Garikapaty VPS, Ashok BT, et al. Sulindac, 3, 3ʹ-diindolylmethane and curcumin reduce carcinogenesis in the Pirc rat, an Apc-driven model of colon carcinogenesis. BMC Cancer. 2015;15(1):611. doi:10.1186/s12885-015-1627-9
  • Kim EJ, Park SY, Shin HK, et al. Activation of caspase-8 contributes to 3, 3′-diindolylmethane-induced apoptosis in colon cancer cells. J Nutr. 2007;137(1):31–36. doi:10.1093/jn/137.1.31
  • Kim EJ, Shin M, Park H, et al. Oral administration of 3, 3′-diindolylmethane inhibits lung metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice. J Nutr. 2009;139(12):2373–2379. doi:10.3945/jn.109.111864
  • Ichite N, Chougule MB, Jackson T, et al. Enhancement of docetaxel anticancer activity by a novel diindolylmethane compound in human non–small cell lung cancer. Clin Cancer Res. 2009;15(2):543–552. doi:10.1158/1078-0432.CCR-08-1558
  • Wu T, Chen C, Li F, et al. 3, 3ʹ‑Diindolylmethane inhibits the invasion and metastasis of nasopharyngeal carcinoma cells in vitro and in vivo by regulation of epithelial mesenchymal transition. Exp Ther Med. 2014;7(6):1635–1638. doi:10.3892/etm.2014.1649
  • Xu Y, Zhang J, Shi W, et al. Anticancer effects of 3, 3ʹ-diindolylmethane are associated with G1 arrest and mitochondria-dependent apoptosis in human nasopharyngeal carcinoma cells. Oncol Lett. 2013;5(2):655–662. doi:10.3892/ol.2012.1063
  • Xue L, Pestka J, Li M, et al. 3, 3′-Diindolylmethane stimulates murine immune function in vitro and in vivo. J Nutr Biochem. 2008;19(5):336–344. doi:10.1016/j.jnutbio.2007.05.004
  • Cho HJ, Seon MR, Lee YM, et al. 3, 3′-Diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. J Nutr. 2008;138(1):17–23. doi:10.1093/jn/138.1.17
  • Bradlow HL, Michnovicz JJ, Telang NT, et al. Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis. 1991;12(9):1571–1574. doi:10.1093/carcin/12.9.1571
  • Roy A, Ganguly A, BoseDasgupta S, et al. Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3, 3′-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Mol Pharmacol. 2008;74(5):1292–1307. doi:10.1124/mol.108.050161
  • Bharate SB, Bharate JB, Khan SI, et al. Discovery of 3, 3′-diindolylmethanes as potent antileishmanial agents. Eur J Med Chem. 2013;63:435–443.
  • Roy A, Das BB, Ganguly, A, et al. An insight into the mechanism of inhibition of unusual bi-subunit topoisomerase I from Leishmania donovani by 3, 3′-di-indolylmethane, a novel DNA topoisomerase I poison with a strong binding affinity to the enzyme. Biochem J. 2007;409(2):611–622.
  • Rieck GC, Fiander AN. Human papillomavirus, cervical carcinogenesis and chemoprevention with Indole derivates–a review of pathomechanisms. Mol Nutr Food Res. 2008;52(1):105–113.
  • Sepkovic DW, Stein J, Carlisle AD, et al. Results from a dose–response study using 3, 3′-diindolylmethane in the K14-HPV16 transgenic mouse model: cervical histology. Cancer Prev Res. 2011;4(6):890–896.
  • Auborn KJ, Carter TH. Treatment of human papillomavirus gynecologic infections. Clin Lab Med. 2000;20(2):407–422.
  • Ashrafian L, Sukhikh G, Kiselev V, et al. Double-blind randomized placebo-controlled multicenter clinical trial (phase IIa) on diindolylmethane’s efficacy and safety in the treatment of CIN: implications for cervical cancer prevention. EPMA J. 2015;6(1):25.
  • Luo Y, Wang TT, Teng Z et al. Encapsulation of indole-3-carbinol and 3, 3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chem. 2013;139(1–4):224–230.
  • McAlindon T, Gulin J, Chen T, et al. Indole-3-carbinol in women with SLE: effect on estrogen metabolism and disease activity. Lupus. 2001;10(11):779–783.
  • Wong GY, Bradlow L, Sepkovic D, et al. Dose‐ranging study of Indole‐3‐Carbinol for breast cancer prevention. J Cell Biochem. 1997;67(S28‒29):111–116.
  • Rosen CA, Woodson GE, Thomson JW, et al. Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg. 1998;118(6):810–815.
  • Yoshida M, Katashima S, Ando J, et al. Dietary indole-3-carbinol promotes endometrial adenocarcinoma development in rats initiated with N-ethyl-N′-nitro-N-nitrosoguanidine, with induction of cytochrome P450s in the liver and consequent modulation of estrogen metabolism. Carcinogenesis. 2004;25(11):2257–2264.
  • Kim DJ, Han BS, Ahn B, et al. Enhancement by indole-3-carbinol of liver and thyroid gland neoplastic development in a rat medium-term multiorgan carcinogenesis model. Carcinogenesis. 1997;18(2):377–381.
  • Pence BC, Buddingh F, Yang SP. Multiple dietary factors in the enhancement of dimethylhydrazine carcinogenesis: main effect of indole-3-carbinol. J Natl Cancer Inst. 1986;77(1):269–276.
  • Anderton MJ, Manson MM, Verschoyle R, et al. Physiological modeling of formulated and crystalline 3,3ʹ-diindolylmethane pharmacokinetics following oral administration in mice. Drug Metab Dispos. 2004;32(6):632–638. doi:10.1124/dmd.32.6.632
  • Sepkovic DW, Bradlow HL, Bell M. Quantitative determination of 3,3ʹ-diindolylmethane in urine of individuals receiving indole-3-carbinol. Nutr Cancer. 2001;41(1–2):57–63.
  • Bradlow HL, Zeligs MA. Diindolylmethane (DIM) spontaneously forms from indole-3-carbinol (I3C) during cell culture experiments. In Vivo (Brooklyn). 2010;24(4):387–391.
  • Zeligs MA, Jacobs IC. Compositions and methods of adjusting steroid hormone metabolism through phytochemicals. Google Patents. 2000
  • Reed GA, Arneson DW, Putnam WC, et al. Single-dose and multiple-dose administration of indole-3-carbinol to women: pharmacokinetics based on 3,3ʹ-diindolylmethane. Cancer Epidemiol Biomarkers Prev. 2006;15(12):2477–2481.
  • Kravchenko LV, Avren'eva LI, Guseva GV, et al. Effect of nutritional indoles on activity of xenobiotic metabolism enzymes and T-2 toxicity in rats. Bull Exp Biol Med. 2001;131(6):544–547.
  • Fujioka N, Ainslie-Waldman CE, Upadhyaya P, et al. Urinary 3,3ʹ-diindolylmethane: a biomarker of glucobrassicin exposure and indole-3-carbinol uptake in humans. Cancer Epidemiol Biomarkers Prev. 2014;23(2):282–287.
  • Fujioka N, Ransom BW, Carmella SG, et al. Harnessing the power of cruciferous vegetables: developing a biomarker for brassica vegetable consumption using urinary 3,3ʹ-diindolylmethane. Cancer Prev Res. 2016;9(10):788–793.
  • Gee JR, Saltzstein DR, Messing E, et al. Phase Ib placebo-controlled, tissue biomarker trial of diindolylmethane (BR-DIMNG) in patients with prostate cancer who are undergoing prostatectomy. Eur J Cancer Prev. 2016;25(4):312–320.
  • Rajoria S, Suriano R, Parmar PS, et al. 3,3ʹ-diindolylmethane modulates estrogen metabolism in patients with thyroid proliferative disease: a pilot study. Thyroid. 2011;21(3):299–304.
  • Heath EI, Heilbrun LK, Li J, et al. A Phase I dose-escalation study of oral BR-DIM (BioResponse 3,3ʹ- Diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. Am J Transl Res. 2010;2(4):402–411.
  • Hwang C, Sethi S, Heilbrun LK, et al. Anti-androgenic activity of absorption-enhanced 3, 3ʹ-diindolylmethane in prostatectomy patients. Am J Transl Res. 2016;8(1):166.
  • Hong C, Kim H-A, Firestone GL, et al. 3, 3′-Diindolylmethane (DIM) induces a G1 cell cycle arrest in human breast cancer cells that is accompanied by Sp1-mediated activation of p21WAF1/CIP1 expression. Carcinogenesis. 2002;23(8):1297–1305.
  • Smith S, Sepkovic D, Bradlow HL, et al. 3, 3′-Diindolylmethane and genistein decrease the adverse effects of estrogen in LNCaP and PC-3 prostate cancer cells. J Nutr. 2008;138(12):2379–2385.
  • Bovee TF, Schoonen WG, Hamers AR, et al. Screening of synthetic and plant-derived compounds for (anti) estrogenic and (anti) androgenic activities. Anal Bioanal Chem. 2008;390(4):1111–1119.
  • Bryant HU, Dere WH. Selective estrogen receptor modulators: an alternative to hormone replacement therapy. Proc Soc Exp Biol Med. 1998;217(1):45–52.
  • Jordan VC. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents. J Med Chem. 2003;46(7):1081–1111.
  • Nuttall ME, Bradbeer JN, Stroup GB, et al. Idoxifene: a novel selective estrogen receptor modulator prevents bone loss and lowers cholesterol levels in ovariectomized rats and decreases uterine weight in intact rats. Endocrinology. 1998;139(12):5224–5234.
  • Oseni T, Patel R, Pyle J, et al. Selective estrogen receptor modulators and phytoestrogens. Planta Med. 2008;74(13):1656–1665.
  • Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005;227(2):115–124.
  • Martucci CP, Fishman J. P450 enzymes of estrogen metabolism. Pharmacol Ther. 1993;57(2–3):237–257.
  • Bradlow H, Telang N, Sepkovic D, et al. 2-hydroxyestrone: the ‘good’ estrogen. J Endocrinol. 1996;150(3_Suppl):S259–S265.
  • Telang NT, Suto A, Wong GY, et al. Induction by estrogen metabolite 16α;-hydroxyestrone of genotoxic damage and aberrant proliferation in mouse mammary epithelial cells. J Natl Cancer Inst. 1992;84(8):634–638. doi:10.1093/jnci/84.8.634
  • Yuan F, Chen DZ, Liu K, et al. Anti-estrogenic activities of indole-3-carbinol in cervical cells: implication for prevention of cervical cancer. Anticancer Res. 1999;19(3A):1673–1680.
  • Muti P, Bradlow HL, Micheli A, et al. Estrogen metabolism and risk of breast cancer: a prospective study of the 2: 16α-hydroxyestrone ratio in premenopausal and postmenopausal women. Epidemiology. 2000;11(6):635–640.
  • Im A, Vogel VG, Ahrendt G, et al. Urinary estrogen metabolites in women at high risk for breast cancer. Carcinogenesis. 2009;30(9):1532–1535. doi:10.1093/carcin/bgp139
  • Ursin G, London S, Stanczyk FZ, et al. Urinary 2-hydroxyestrone/16α-hydroxyestrone ratio and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 1999;91(12):1067–1072.
  • Cauley JA, Zmuda JM, Danielson ME, et al. Estrogen metabolites and the risk of breast cancer in older women. Epidemiology. 2003;14(6):740–744. doi:10.1097/01.ede.0000091607.77374.74
  • Rajoria S, Suriano R, Wilson YL, et al. 3,3ʹ-diindolylmethane inhibits migration and invasion of human cancer cells through combined suppression of ERK and AKT pathways. Oncol Rep. 2011;25(2):491–497. doi:10.3892/or.2010.1076
  • Thomson CA, Chow HHS, Wertheim BC, et al. A randomized, placebo-controlled trial of diindolylmethane for breast cancer biomarker modulation in patients taking tamoxifen. Breast Cancer Res Treat. 2017;165(1):97–107. doi:10.1007/s10549-017-4292-7
  • Nikitina D, Llacuachaqui M, Sepkovic D, et al. The effect of oral 3,3ʹ-diindolylmethane supplementation on the 2:16alpha-OHE ratio in BRCA1 mutation carriers. Fam Cancer. 2015;14(2):281–286. doi:10.1007/s10689-015-9783-2
  • Kotsopoulos J, Zhang S, Akbari M, et al. BRCA1 mRNA levels following a 4-6-week intervention with oral 3,3ʹ-diindolylmethane. Br J Cancer. 2014;111(7):1269–1274. doi:10.1038/bjc.2014.391
  • Turner N, Reis-Filho JS, Russell AM, et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene. 2007;26(14):2126. doi:10.1038/sj.onc.1210014
  • Thompson ME, Jensen RA, Obermiller PS, et al. Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet. 1995;9(4):444. doi:10.1038/ng0495-444
  • Dobrovic A, Simpfendorfer D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997;57(16):3347–3350.
  • Van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530. doi:10.1038/415530a
  • Abdelbaqi K,Lack N, Guns ET, et al. Antiandrogenic and growth inhibitory effects of ring‐substituted analogs of 3, 3′‐diindolylmethane (Ring‐DIMs) in hormone‐responsive LNCaP human prostate cancer cells. Prostate. 2011;71(13):1401–1412.
  • Vasaitis T, Belosay A, Schayowitz A, et al. Androgen receptor inactivation contributes to antitumor efficacy of 17α-hydroxylase/17, 20-lyase inhibitor 3β-hydroxy-17-(1H-benzimidazole-1-yl) androsta-5, 16-diene in prostate cancer. Mol Cancer Ther. 2008;7(8):2348–2357.
  • Vivar OI, Lin C-L, Firestone GL, et al. 3, 3′-Diindolylmethane induces a G1 arrest in human prostate cancer cells irrespective of androgen receptor and p53 status. Biochem Pharmacol. 2009;78(5):469–476.
  • Cohen JH, Kristal AR, Stanford JL. Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst. 2000;92(1):61–68. doi:10.1093/jnci/92.1.61
  • Jain MG, Hislop GT, Howe GR, et al. Plant foods, antioxidants, and prostate cancer risk: findings from case-control studies in Canada. Nutr Cancer. 1999;34(2):173–184. doi:10.1207/S15327914NC3402_8
  • Joseph MA, Moysich KB, Freudenheim JL, et al. Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk. Nutr Cancer. 2004;50(2):206–213. doi:10.1207/s15327914nc5002_11
  • Kolonel LN, Hankin JH, Whittemore AS, et al. Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. Cancer Epidemiol Prev Biomarkers. 2000;9(8):795–804.
  • Giovannucci E, Rimm EB, Liu Y, et al. A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol Prev Biomarkers. 2003;12(12):1403–1409.
  • Hsing AW, McLaughlin JK, Schuman LM, et al. Diet, tobacco use, and fatal prostate cancer: results from the Lutheran Brotherhood Cohort Study. Cancer Res. 1990;50(21):6836–6840.
  • Key TJ, Allen N, Appleby P, et al. Fruits and vegetables and prostate cancer: no association among 1104 cases in a prospective study of 130,544 men in the European Prospective Investigation into Cancer and Nutrition (EPIC). Int J Cancer. 2004;109(1):119–124. doi:10.1002/ijc.11671
  • Schuurman AG, Goldbohm RA, Dorant E, et al. Vegetable and fruit consumption and prostate cancer risk: a cohort study in The Netherlands. Cancer Epidemiol Prev Biomarkers. 1998;7(8):673–680.
  • Kong D, Heath E, Chen W, et al. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One. 2012;7(3):e33729. doi:10.1371/journal.pone.0033729
  • Li Y, VandenBoom TG, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–6712. doi:10.1158/0008-5472.CAN-09-1298
  • Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer. 2008;8(4):268. doi:10.1038/nrc2351
  • Oesterling JE. Prostate-specific antigen and prostate cancer. Curr Opin Urol. 1992;2(5):348–355. doi:10.1097/00042307-199210000-00006
  • Partin AW, Kattan MW, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer: a multi-institutional update. JAMA. 1997;277(18):1445–1451. doi:10.1001/jama.1997.03540420041027
  • Ahmad A, Kong D, Sarkar SH, et al. Inactivation of uPA and its receptor uPAR by 3, 3′‐diindolylmethane (DIM) leads to the inhibition of prostate cancer cell growth and migration. J Cell Biochem. 2009;107(3):516–527. doi:10.1002/jcb.22152
  • Li Y, Wang Z, Kong D, et al. Regulation of FOXO3a/β-catenin/GSK-3β signaling by 3, 3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J Biol Chem. 2007;282(29):21542–21550. doi:10.1074/jbc.M701978200
  • Kjær SK, van den Brule AJC, Bock JE, et al. Human papillomavirus—the most significant risk determinant of cervical intraepithelial neoplasia. Int J Cancer. 1996;65(5):601–606. doi:10.1002/(SICI)1097-0215(19960301)65:5<601::AID-IJC8>3.0.CO;2-6
  • Koutsky L. Epidemiology of genital human papillomavirus infection. Am J Med. 1997;102(5):3–8. doi:10.1016/S0002-9343(97)00177-0
  • Ho GY, Burk RD, Klein S, et al. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst. 1995;87(18):1365–1371. doi:10.1093/jnci/87.18.1365
  • Schiffman M, Castle PE. Human papillomavirus: epidemiology and public health. Arch Pathol Lab Med. 2003;127(8):930–934.
  • Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342. doi:10.1038/nrc798
  • Del Priore G, Gudipudi DK, Montemarano N, et al. Oral diindolylmethane (DIM): pilot evaluation of a nonsurgical treatment for cervical dysplasia. Gynecol Oncol. 2010;116(3):464–467. doi:10.1016/j.ygyno.2009.10.060
  • Paltsev M, Kiselev V, Muyzhnek E, et al. Safety and tolerability of DIM-based therapy designed as personalized approach to reverse prostatic intraepithelial neoplasia (PIN). EPMA J. 2014;5(1):18. doi:10.1186/1878-5085-5-18
  • Paltsev M, Kiselev V, Drukh V, et al. First results of the double-blind randomized placebo-controlled multicenter clinical trial of DIM-based therapy designed as personalized approach to reverse prostatic intraepithelial neoplasia (PIN). EPMA J. 2016;7(1):5. doi:10.1186/s13167-016-0057-3
  • Castanon A, Tristram A, Mesher D, et al. Effect of diindolylmethane supplementation on low-grade cervical cytological abnormalities: double-blind, randomised, controlled trial. Br J Cancer. 2012;106(1):45–52. doi:10.1038/bjc.2011.496
  • Reed GA, Sunega JM, Sullivan DK, et al. Single-dose pharmacokinetics and tolerability of absorption-enhanced 3,3ʹ-diindolylmethane in healthy subjects. Cancer Epidemiol Biomarkers Prev. 2008;17(10):2619–2624. doi:10.1158/1055-9965.EPI-08-0520
  • Lorincz AT, Brentnall AR, Vasiljević N, et al. HPV16 L1 and L2 DNA methylation predicts high-grade cervical intraepithelial neoplasia in women with mildly abnormal cervical cytology. Int J Cancer. 2013;133(3):637–644. doi:10.1002/ijc.28050
  • Morales-Prieto DM, Herrmann J, Osterwald H, et al. Comparison of dienogest effects upon 3,3ʹ-diindolylmethane supplementation in models of endometriosis and clinical cases. Reprod Biol. 2018;18(3):252–258. doi:10.1016/j.repbio.2018.07.002