828
Views
18
CrossRef citations to date
0
Altmetric
Review

Transcranial Photobiomodulation For The Management Of Depression: Current Perspectives

ORCID Icon & ORCID Icon
Pages 3255-3272 | Published online: 22 Nov 2019

References

  • Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289(23):3095–3105. doi:10.1001/jama.289.23.309512813115
  • Ferrari AJ, Charlson FJ, Norman RE, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 2013;10(11):e1001547. doi:10.1371/journal.pmed.100154724223526
  • Rush AJ, Warden D, Wisniewski SR, et al. STAR*D: revising conventional wisdom. CNS Drugs. 2009;23(8):627–647. doi:10.2165/00023210-200923080-0000119594193
  • Rosa MA, Lisanby SH. Somatic treatments for mood disorders. Neuropsychopharmacology. 2012;37(1):102–116. doi:10.1038/npp.2011.22521976043
  • Hamblin MR. Shining light on the head: photobiomodulation for brain disorders. BBA Clin. 2016;6:113–124. doi:10.1016/j.bbacli.2016.09.00227752476
  • Young AE, Germon TJ, Barnett NJ, Manara AR, Nelson RJ. Behaviour of near-infrared light in the adult human head: implications for clinical near-infrared spectroscopy. Br J Anaesth. 2000;84(1):38–42. doi:10.1093/oxfordjournals.bja.a01337910740545
  • Henderson TA, Morries LD. Near-infrared photonic energy penetration—principles and practice In: Hamblin MR, Ying-Ying H, editors. Photobiomodulation in the Brain. London: Elseveir; 2019:67–88.
  • Jagdeo JR, Adams LE, Brody NI, Siegel DM. Transcranial red and near infrared light transmission in a cadaveric model. PLoS One. 2012;7(10):e47460. doi:10.1371/journal.pone.004746023077622
  • Lapchak PA, Boitano PD, Butte PV, et al. Transcranial Near-Infrared Laser Transmission (NILT) Profiles (800 nm): systematic Comparison in Four Common Research Species. PLoS One. 2015;10(6):e0127580. doi:10.1371/journal.pone.012758026039354
  • Tedford CE, DeLapp S, Jacques S, Anders J. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers Surg Med. 2015;47(4):312–322. doi:10.1002/lsm.v47.425772014
  • Stolik S, Delgado JA, Pèrez A, Anasagasti L. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J Photochem Photobiol B. 2000;57(2–3):90–93. doi:10.1016/S1011-1344(00)00082-811154088
  • Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat. 2015;11:2191–2208. doi:10.2147/NDT26346298
  • Yue L, Humayun MS. Monte Carlo analysis of the enhanced transcranial penetration using distributed near-infrared emitter array. J Biomed Opt. 2015;20(8):088001. doi:10.1117/1.JBO.20.8.088001
  • Pitzschke A, Lovisa B, Seydoux O, et al. Red and NIR light dosimetry in the human deep brain. Phys Med Biol. 2015;60(7):2921–2937. doi:10.1088/0031-9155/60/7/292125789711
  • van der Bliek AM, Sedensky MM, Morgan PG. Cell Biology of the Mitochondrion. Genetics. 2017;207:843–871. doi:10.1534/genetics.117.30026229097398
  • Rezin GT, Cardoso MR, Gonçalves CL, et al. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int. 2008;53(6–8):395–400. doi:10.1016/j.neuint.2008.09.01218940214
  • Shumake J, Gonzalez-Lima F. Brain Systems Underlying Susceptibility to Helplessness and Depression. Behav Cogn Neurosci Rev. 2003;2(3):198–221. doi:10.1177/153458230325905715006293
  • Harper DG, Jensen JE, Renshaw PR. 31P MRS in psychiatric disorders In: Bottomley PA, Griffiths JR, editors. Handbook of Magnetic Resonance Spectroscopy in Vivo. West Sussex, UK: Wiley; 2016:927–946.
  • Bessman SP. The creatine phosphate energy shuttle–the molecular asymmetry of a “pool”. Anal Biochem. 1987;161(2):519–523. doi:10.1016/0003-2697(87)90483-03578809
  • Harper DG, Joe EB, Jensen JE, Ravichandran C, Forester BP. Brain levels of high-energy phosphate metabolites and executive function in geriatric depression. Int J Geriatr Psychiatry. 2016;31(11):1241–1249. doi:10.1002/gps.v31.1126891040
  • Renshaw PF, Parow AM, Hirashima F, et al. Multinuclear magnetic resonance spectroscopy studies of brain purines in major depression. Am J Psychiatry. 2001;158(12):2048–2055. doi:10.1176/appi.ajp.158.12.204811729024
  • Iosifescu DV, Bolo NR, Nierenberg AA, Jensen JE, Fava M, Renshaw PF. Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biol Psychiatry. 2008;63(12):1127–1134. doi:10.1016/j.biopsych.2007.11.02018206856
  • Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12(6):527–544. doi:10.1016/S0924-977X(02)00102-512468016
  • Mayberg HS, Brannan SK, Tekell JL. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry. 2000;48(8):830. doi:10.1016/S0006-3223(00)01036-211063978
  • Karabatsiakis A, Böck C, Salinas-Manrique J, et al. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl Psychiatry. 2014;4(6):e397. doi:10.1038/tp.2014.44
  • Hroudová J, Fišar Z, Kitzlerová E, Zvěřová M, Raboch J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013;13(6):795–800. doi:10.1016/j.mito.2013.05.00523688905
  • Gardner A, Johansson A, Wibom R, et al. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord. 2003;76(1–3):55–68. doi:10.1016/S0165-0327(02)00067-812943934
  • Villa RF, Ferrari F, Gorini A, Brunello N, Tascedda F. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria. Neuroscience. 2016;330:326–334. doi:10.1016/j.neuroscience.2016.05.05127268280
  • Karu T, Afanas`eva NI. Cytochrome c oxidase acts as a primary photoacceptor in cell cultures subjected to visible and near IR laser irradiation. Dokl Biol Sci. 1995.
  • Pastore D, Greco M, Passarella S. Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol. 2000;76(6):863–870. doi:10.1080/0955300005002902010902741
  • Salehpour F, Ahmadian N, Rasta SH, Farhoudi M, Karimi P, Sadigh-Eteghad S. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol Aging. 2017;58:140–150. doi:10.1016/j.neurobiolaging.2017.06.02528735143
  • Wang X, Tian F, Reddy DD, et al. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab. 2017;37(12):3789–3802. doi:10.1177/0271678X1769178328178891
  • Gkotsi D, Begum R, Salt T, et al. Recharging mitochondrial batteries in old eyes. Near infra-red increases ATP. Exp Eye Res. 2014;122:50–53. doi:10.1016/j.exer.2014.02.02324631333
  • Silveira PC, Streck EL, Pinho RA. Evaluation of mitochondrial respiratory chain activity in wound healing by low-level laser therapy. J Photochem Photobiol B. 2007;86(3):279–282. doi:10.1016/j.jphotobiol.2006.10.00217113781
  • Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009;95(2):89–92. doi:10.1016/j.jphotobiol.2009.01.00419232497
  • Masha RT, Houreld NN, Abrahamse H. Low-Intensity Laser Irradiation at 660 nm Stimulates Transcription of Genes Involved in the Electron Transport Chain. Photomed Laser Surg. 2013;31(2):47–53. doi:10.1089/pho.2012.336923240874
  • Amaroli A, Ravera S, Parker S, Panfoli I, Benedicenti A, Benedicenti S. An 808-nm Diode Laser with a Flat-Top Handpiece Positively Photobiomodulates Mitochondria Activities. Photomed Laser Surg. 2016;34(11):564–571. doi:10.1089/pho.2015.403527622977
  • Giuliani A, Lorenzini L, Alessandri M, et al. In vitro exposure to very low-level laser modifies expression level of extracellular matrix protein RNAs and mitochondria dynamics in mouse embryonic fibroblasts. BMC Complement Altern Med. 2015;15:78. doi:10.1186/s12906-015-0593-825886934
  • Mochizuki-Oda N, Kataoka Y, Cui Y, Yamada H, Heya M, Awazu K. Effects of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat brain tissue. Neurosci Lett. 2002;323(3):207–210. doi:10.1016/S0304-3940(02)00159-311959421
  • Begum R, Calaza K, Kam JH, Salt TE, Hogg C, Jeffery G. Near-infrared light increases ATP, extends lifespan and improves mobility in aged Drosophila melanogaster. Biol Lett. 2015;11(3):20150073. doi:10.1098/rsbl.2015.007325788488
  • Rojas JC, Bruchey AK, Gonzalez-Lima F. Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzheimers Dis. 2012;32(3):741–752. doi:10.3233/JAD-2012-12081722850314
  • Tian F, Hase SN, Gonzalez-Lima F, Liu H. Transcranial laser stimulation improves human cerebral oxygenation. Lasers Surg Med. 2016;48(4):343–349. doi:10.1002/lsm.2247126817446
  • Yu Z, Liu N, Zhao J, et al. Near infrared radiation rescues mitochondrial dysfunction in cortical neurons after oxygen-glucose deprivation. Metab Brain Dis. 2015;30(2):491–496. doi:10.1007/s11011-014-9515-624599760
  • Xu Z, Guo X, Yang Y, et al. Low-level laser irradiation improves depression-like behaviors in mice. Mol Neurobiol. 2017;54(6):4551–4559. doi:10.1007/s12035-016-9983-227379735
  • Ferraresi C, Kaippert B, Avci P, et al. Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol. 2015;91(2):411–416. doi:10.1111/php.2015.91.issue-225443662
  • Mintzopoulos D, Gillis TE, Tedford CE, Kaufman MJ. Effects of near-infrared light on cerebral bioenergetics measured with phosphorus magnetic resonance spectroscopy. Photomed Laser Surg. 2017;35(8):395–400. doi:10.1089/pho.2016.423828186868
  • Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516–533. doi:10.1007/s10439-011-0454-722045511
  • Sanderson TH, Wider JM, Lee I, et al. Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury [published correction appears in Sci Rep. 2018 Apr 25;8(1):6729]. Sci Rep. 2018;8(1):3481. doi:10.1038/s41598-018-21869-x29472564
  • Oron U, Ilic S, De Taboada L, Streeter J. Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg. 2007;25(3):180–182. doi:10.1089/pho.2007.206417603858
  • Wu Q, Xuan W, Ando T, et al. Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med. 2012;44(3):218–226. doi:10.1002/lsm.v44.322275301
  • Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta Gen Subj. 2017;1861(2):441–449. doi:10.1016/j.bbagen.2016.10.00827751953
  • Uozumi Y, Nawashiro H, Sato S, Kawauchi S, Shima K, Kikuchi M. Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation. Lasers Surg Med. 2010;42(6):566–576. doi:10.1002/lsm.v42:620662034
  • Nawashiro H, Wada K, Nakai K, Sato S. Focal increase in cerebral blood flow after treatment with near-infrared light to the forehead in a patient in a persistent vegetative state. Photomed Laser Surg. 2012;30(4):231–233. doi:10.1089/pho.2011.304422047598
  • Salgado AS, Zângaro RA, Parreira RB, Kerppers II. The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women. Lasers Med Sci. 2015;30(1):339–346. doi:10.1007/s10103-014-1669-225277249
  • Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of Vascular Endothelial Growth Factor (VEGF). J Cell Mol Med. 2005;9(4):777–794. doi:10.1111/jcmm.2005.9.issue-416364190
  • Dias FJ, Issa JP, Barbosa AP, de Vasconcelos PB, Watanabe IS, Mizusakiiyomasa M. Effects of low-level laser irradiation in ultrastructural morphology, and immunoexpression of VEGF and VEGFR-2 of rat masseter muscle. Micron. 2012;43(2–3):237–244. doi:10.1016/j.micron.2011.08.00521924919
  • Hamblin MR. The role of nitric oxide in low level light therapy. Proc SPIE, Mechanisms for Low-Light Therapy III; 2008:6846 Avaialble from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6846/684602/The-role-of-nitric-oxide-in-low-level-light-therapy/ Accessed 1030, 2019.10.1117/12.764918.short?SSO=1
  • Moreno J, Gaspar E, López-Bello G, et al. Increase in nitric oxide levels and mitochondrial membrane potential in platelets of untreated patients with major depression. Psychiatry Res. 2013;209(3):447–452. doi:10.1016/j.psychres.2012.12.02423357685
  • Zhang R, Mio Y, Pratt PF, et al. Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol. 2009;46(1):4–14. doi:10.1016/j.yjmcc.2008.09.70718930064
  • Keszler A, Brandal G, Baumgardt S, et al. Far red/near infrared light-induced protection against cardiac ischemia and reperfusion injury remains intact under diabetic conditions and is independent of nitric oxide synthase. Front Physiol. 2014;5:305. doi:10.3389/fphys.2014.0030525202275
  • Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative–antioxidative systems. Hum Psychopharmacol. 2007;22(2):67–73. doi:10.1002/(ISSN)1099-107717299810
  • Chludzińska L, Ananicz E, Jarosławska A, Komorowska M. Near-infrared radiation protects the red cell membrane against oxidation. Blood Cells Mol Dis. 2005;35(1):74–79. doi:10.1016/j.bcmd.2005.04.00315919217
  • Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics. 2013;6(10):829–838. doi:10.1002/jbio.20120015723281261
  • Salehpour F, Farajdokht F, Erfani M, et al. Transcranial near-infrared photobiomodulation attenuates memory impairment and hippocampal oxidative stress in sleep-deprived mice. Brain Res. 2018;1682:36–43. doi:10.1016/j.brainres.2017.12.04029307593
  • Salehpour F, Farajdokht F, Cassano P, et al. Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res Bull. 2019;114:213–222. doi:10.1016/j.brainresbull.2018.10.010
  • Yin K, Zhu R, Wang S, Zhao RC. Low-level laser effect on proliferation, migration, and antiapoptosis of mesenchymal stem cells. Stem Cells Dev. 2017;26(10):762–775. doi:10.1089/scd.2016.033228178868
  • Wang R, Dong Y, Lu Y, Zhang W, Brann DW, Zhang Q. Photobiomodulation for Global Cerebral Ischemia: targeting Mitochondrial Dynamics and Functions. Mol Neurobiol. 2019;56(3):1852–1869. doi:10.1007/s12035-018-1191-929951942
  • Yang L, Dong Y, Wu C, et al. Photobiomodulation preconditioning prevents cognitive impairment in a neonatal rat model of hypoxia‐ischemia. J Biophotonics. 2019;12(6):e201800359. doi:10.1002/jbio.2019.12.issue-630652418
  • Tanaka Y, Akiyoshi J, Kawahara Y, et al. Infrared radiation has potential antidepressant and anxiolytic effects in animal model of depression and anxiety. Brain Stimul. 2011;4(2):71–76. doi:10.1016/j.brs.2010.04.00121511206
  • Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR. Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics. 2015;8(6):502–511. doi:10.1002/jbio.20140006925196192
  • Yang L, Tucker D, Dong Y, et al. Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Exp Neurol. 2018;299(Pt A):86–96. doi:10.1016/j.expneurol.2017.10.01329056360
  • Mohammed HS. Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats. Lasers Med Sci. 2016;31(8):1651–1656. doi:10.1007/s10103-016-2033-527437987
  • Salehpour F, Rasta SH, Mohaddes G, Sadigh-Eteghad S, Salarirad S. Therapeutic effects of 10‐HzPulsed wave lasers in rat depression model: A comparison between near‐infrared and red wavelengths. Lasers Surg Med. 2016;48(7):695–705. doi:10.1002/lsm.v48.727367569
  • Salehpour F, Rasta SH, Mohaddes G, Sadigh-Eteghad S, Salarirad S. A comparison between antidepressant effects of transcranial near-infrared laser and citalopram in a rat model of depression. Clin Transl Neurophotonics. 2017;10050 Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10050/100500G/A-comparison-between-antidepressant-effects-of-transcranial-near-infrared-laser/ Accessed October 30, 2019.10.1117/12.2251598.full?SSO=1
  • Wu X, Alberico SL, Moges H, De Taboada L, Tedford CE. Pulsed light irradiation improves behavioral outcome in a rat model of chronic mild stress. Lasers Surg Med. 2012;44(3):227–232. doi:10.1002/lsm.v44.322334326
  • Ando T, Xuan W, Xu T, et al. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One. 2011;6(10). doi:10.1371/journal.pone.0026212.
  • Schiffer F, Johnston AL, Ravichandran C, et al. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct. 2009;5:46. doi:10.1186/1744-9081-5-4619995444
  • Naeser MA, Zafonte R, Krengel MH, et al. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J Neurotrauma. 2014;31(11):1008–1017. doi:10.1089/neu.2013.324424568233
  • Cassano P, Cusin C, Mischoulon D, et al. Near-Infrared Transcranial Radiation for Major Depressive Disorder: proof of Concept Study. Psychiatry J. 2015;2015:352979. doi:10.1155/2015/35297926356811
  • Morries LD, Cassano P, Henderson TA. Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr Dis Treat. 2015;11:2159–2175. doi:10.2147/NDT.S6580926347062
  • Henderson TA, Morries LD. Multi-watt near-infrared phototherapy for the treatment of comorbid depression: an open-label single-arm study. Front Psychiatry. 2017;8:187. doi:10.3389/fpsyt.2017.0018729033859
  • Disner SG, Beevers CG, Gonzalez-Lima F. Transcranial Laser Stimulation as Neuroenhancement for Attention Bias Modification in Adults with Elevated Depression Symptoms. Brain Stimul. 2016;9(5):780–787. doi:10.1016/j.brs.2016.05.00927267860
  • Yang W, Ding Z, Dai T, Peng F, Zhang JX. Attention Bias Modification training in individuals with depressive symptoms: A randomized controlled trial. J Behav Ther Exp Psychiatry. 2014;49:101–111. doi:10.1016/j.jbtep.2014.08.00525245928
  • Cassano P, Petrie SR, Mischoulon D, et al. Transcranial Photobiomodulation for the Treatment of Major Depressive Disorder. The ELATED-2 Pilot Trial. Photomed Laser Surg. 2018;36:12. doi:10.1089/pho.2018.4490
  • Henderson TA, Morries LD. SPECT perfusion imaging demonstrates improvement of traumatic brain injury with transcranial near-infrared laser phototherapy. Adv Mind Body Med. 2015;29(4):27–33.
  • Caldieraro MA, Sani G, Bui E, Cassano P. Long-Term Near-Infrared Photobiomodulation for Anxious Depression Complicated by Takotsubo Cardiomyopathy. J Clin Psychopharmacol. 2018;38(3):268–270. doi:10.1097/JCP.000000000000088329601319
  • Zhang B, Wenyou M, Baoting Z, Shuling L. A control study of clinical therapeutic effects of laser acupuncture on depressive neurosis. World J Acupuncture Moxibustion. 1996;6(2):12–17.
  • Quah-Smith JI, Tang WM, Russell J. Laser acupuncture for mild to moderate depression in a primary care setting–a randomised controlled trial. Acupunct Med. 2005;23(3):103–111. doi:10.1136/aim.23.3.10316259308
  • Quah-Smith I, Smith C, Crawford JD, Russell J. Laser acupuncture for depression: a randomised double blind controlled trial using low intensity laser intervention. J Affect Disord. 2013;148(2–3):179–187. doi:10.1016/j.jad.2012.11.05823337655
  • Gabel CP, Petrie SR, Mischoulon D, et al. A case control series for the effect of photobiomodulation in patients with low back pain and concurrent depression. Laser Ther. 2018;27(3):167–173. doi:10.5978/islsm.27_18-OR-18
  • Caldieraro MA, Cassano P. Transcranial and systemic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms. J Affect Disord. 2019;243(15):262–273. doi:10.1016/j.jad.2018.09.04830248638
  • Huisa BN, Stemer AB, Walker MG, Rapp K, Meyer BC, Zivin JA. Transcranial laser therapy for acute ischemic stroke: a pooled analysis of NEST-1 and NEST-2. Int J Stroke. 2013;8(5):315–320. doi:10.1111/j.1747-4949.2011.00754.x22299818
  • Lampl Y, Zivin JA, Fisher M, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy. Stroke. 2007;38(6):1843–1849. doi:10.1161/STROKEAHA.106.47823017463313
  • Hacke W, Schellinger PD, Albers GW. Transcranial laser therapy in acute stroke treatment: results of neurothera effectiveness and safety trial 3, a phase III clinical end point device trial. Stroke. 2014;45(11):3187–3193. doi:10.1161/STROKEAHA.114.00579525293665
  • Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs light emitting diodes? Photochem Photobiol Sci. 2018;17(8):1003–1017. doi:10.1039/C8PP00176F30044464
  • Hode L. The importance of the coherency. Photomed Laser Surg. 2005;23(4):431–434. doi:10.1089/pho.2005.23.43116144489
  • Fixler D, Duadi H, Ankri R, Zalevsky Z. Determination of coherence length in biological tissues. Lasers Surg Med. 2011;43(4):339–343. doi:10.1002/lsm.2104721500229
  • Leal Junior EC, Lopes-Martins RA, Baroni BM, et al. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg. 2009;27(4):617–623. doi:10.1089/pho.2008.235019302015
  • Sato K, Watanabe R, Hanaoka H, Nakajima T, Choyke PL, Kobayashi H. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy. Oncotarget. 2016;7(12):14324–14335. doi:10.18632/oncotarget.v7i1226885688
  • Hashmi JT, Huang YY, Sharma SK, et al. Effect of pulsing in low-level light therapy. Lasers Surg Med. 2010;42(6):450–466. doi:10.1002/lsm.2095020662021
  • Lapchak PA, Salgado KF, Chao CH, Zivin JA. Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulsed frequency delivery modes. Neuroscience. 2007;148(4):907–914. doi:10.1016/j.neuroscience.2007.07.00217693028
  • Lapchak PA, De Taboada L. Transcranial near infrared laser treatment (NILT) increases cortical adenosine-5ʹ-triphosphate (ATP) content following embolic strokes in rabbits. Brain Res. 2010;1306:100–105. doi:10.1016/j.brainres.2009.10.02219837048
  • Ilic S, Leichliter S, Streeter J, Oron A, DeTaboada L, Oron U. Effects of Power Densities, Continuous and Pulse Frequencies, and Number of Sessions of Low-Level Laser Therapy on Intact Rat Brain. Photomed Laser Surg. 2006;24(4):458–466. doi:10.1089/pho.2006.24.45816942425
  • Gigo-Benato D, Geuna S, de Castro Rodrigues A, et al. Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model. Lasers Med Sci. 2004;19(1):57–65. doi:10.1007/s10103-004-0300-315316855
  • Brondon P, Stadler I, Lanzafame RJ. Pulsing influences photoradiation outcomes in cell culture. Lasers Surg Med. 2009;41(3):222–226. doi:10.1002/lsm.v41:319291749
  • Karu T. Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed Laser Surg. 2010;28(2):159–160. doi:10.1089/pho.2010.278920374017