95
Views
5
CrossRef citations to date
0
Altmetric
Original Research

The association between CD157/BST1 polymorphisms and the susceptibility of Parkinson’s disease: a meta-analysis

, , , &
Pages 1089-1102 | Published online: 30 Apr 2019

References

  • Nakano N, Matsuda S, Ichimura M, et al. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson‘s disease (Review). Int J Mol Med. 2017;39(2):253–260.28000847
  • Katunina EA, Bezdolny YN. [Epidemiology of Parkinson’s disease]. Zh Nevrol Psikhiatr Im S S Korsakova. 2013;113(12):81–88.
  • Bonuccelli U, Del DP. New pharmacologic horizons in the treatment of Parkinson disease. Neurology. 2006;67(2):30–38. doi:10.1212/WNL.67.7_suppl_2.S30
  • Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson‘s disease and related neurodegenerative disorders. Mol Neurobiol. 2013;47(2):495–508. doi:10.1007/s12035-012-8280-y22622968
  • Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013;9:445–454. doi:10.1038/nrneurol.2013.132
  • Kasai S, Yoshihara T, Lopatina O, et al. Selegiline ameliorates depression-like behavior in mice lacking the CD157/BST-1 gene, a risk factor for Parkinson’s disease. Front Behav Neurosci. 2017;11:75. doi:10.3389/fnbeh.2017.0024628515684
  • Fleming SM. Mechanisms of gene-environment interactions in Parkinson’s disease. Curr Envir Health Rpt. 2017;4(2):192–199. doi:10.1007/s40572-017-0143-2
  • Spencer CC, Plagnol V, Strange A, et al. Dissection of the genetics of Parkinson‘s disease identifies an additional association 5ʹ of SNCA and multiple associated haplotypes at 17q21. Hum Mol Genet. 2011;20(2):345–353. doi:10.1093/hmg/ddq46921044948
  • Soto-Ortolaza AI, Heckman MG, Labbé C, et al. GWAS risk factors in Parkinson‘s disease: LRRK2 coding variation and genetic interaction with PARK16. Am J Neurodegener Dis. 2013;2(4):287–299.24319646
  • Tan EK, Kwok HK, Tan LC, et al. Analysis of GWAS-linked loci in Parkinson disease reaffirms PARK16 as a susceptibility locus. Neurology. 2010;75(6):508–512. doi:10.1212/WNL.0b013e3181eccfcd20697102
  • Wan JY, Edwards KL, Hutter CM, et al. Association mapping of the PARK10 region for Parkinson‘s disease susceptibility genes. Parkinsonism Relat Disord. 2014;20(1):93–98. doi:10.1016/j.parkreldis.2013.10.00124156912
  • Sharma M, Maraganore DM, Ioannidis JP, et al. Role of sepiapterin reductase gene at the PARK3 locus in Parkinson‘s disease-neurobiology of aging. Neurobiol Aging. 2011;32(11):2108.e1-2108.e5. doi:10.1016/j.neurobiolaging.2011.05.024
  • Hamza TH, Zabetian CP, Tenesa A, et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet. 2010;42(9):781–785. doi:10.1038/ng.64220711177
  • Maraganore DM, de Andrade AM, Lesnick TG, et al. High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet. 2005;77(5):685–693. doi:10.1086/49690216252231
  • Zhu L-H, Luo X-G, Zhou Y-S, et al. Lack of association between three single nucleotide polymorphisms in the PARK9, PARK15, and BST1 genes and Parkinson‘s disease in the northern Han Chinese population. Chin Med J (Engl). 2012;125(4):588–592.22490479
  • Ahmed I, Tamouza R, Delord M, et al. Association between Parkinson‘s disease and the HLA-DRB1 locus. Mov Disord. 2012;27(9):1104–1110. doi:10.1002/mds.2503522807207
  • Li N-N, Tan E-K, Chang X-L, et al. Genetic association study between STK39 and CCDC62/HIP1R and Parkinson‘s disease. PLoS One. 2013;8(11):e79211. doi:10.1371/journal.pone.007921124312176
  • Liu X, Cheng R, Verbitsky M, et al. Genome-wide association study identifies candidate genes for Parkinson‘s disease in an Ashkenazi Jewish population. BMC Med Genet. 2011;12(1):104. doi:10.1186/1471-2350-12-10421812969
  • Ferrero E, Buono NL, Morone S, et al. Human canonical CD157/Bst1 is an alternatively spliced isoform masking a previously unidentified primate-specific exon included in a novel transcript. Sci Rep. 2017;7(1):15923. doi:10.1038/s41598-017-16184-w29162908
  • Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson‘s disease. Nat Genet. 2009;41(12):1303–1307. doi:10.1038/ng.48519915576
  • Saad M, Lesage S, Saintpierre A, et al. Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson‘s disease in the European population. Hum Mol Genet. 2011;20(3):615–627. doi:10.1093/hmg/ddq49721084426
  • Chang X-L, Mao X-Y, Li H-H, et al. Association of GWAS loci with PD in China. Am J Med Genet B Neuropsychiatr Genet. 2011;156(3):334–339. doi:10.1002/ajmg.b.v156.3
  • Chang KH, Wu YR, Chen YC, et al. STK39, But Not BST1, HLA-DQB1, and SPPL2B Polymorphism, Is Associated With Han-Chinese Parkinson‘s Disease in Taiwan. Medicine. 2015;94(41):e1690. doi:10.1097/MD.000000000000087426469904
  • Sharma M, Ioannidis JPA, Aasly JO, et al. Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology. 2012;79(7):659–667. doi:10.1212/WNL.0b013e318264e35322786590
  • Simón-Sánchez J, van Hilten JJ, van de Warrenburg B, et al. Genome-wide association study confirms extant PD risk loci among the Dutch. Eur J Hum Genet. 2011;19(6):655–661. doi:10.1038/ejhg.2010.25421248740
  • Cui C, Liu WG, Hua P, et al. Association of BST1 gene polymorphism with Parkinson‘s disease risk in Chinese population. Chin J Clin Neurosci 2018;16(1):1–8.
  • Chen M-L, Lin C-H, Lee M-J, Wu R-M. BST1 rs11724635 interacts with environmental factors to increase the risk of Parkinson‘s disease in a Taiwanese population. Parkinsonism Relat Disord. 2014;20(3):280–283. doi:10.1016/j.parkreldis.2013.11.00924342025
  • Miyake Y, Tanaka K, Fukushima W, et al. Lack of association between BST1 polymorphisms and sporadic Parkinson‘s disease in a Japanese population. J Neurol Sci. 2012;323(1–2):162–166. doi:10.1016/j.jns.2012.09.00823026536
  • Harms M. The EQUATOR network and the PRISMA statement for the reporting of systematic reviews and meta-analyses. Physiotherapy. 2009;95(4):237–240. doi:10.1016/j.physio.2009.10.00119892087
  • Han Y, Xia Z, Guo S, Yu X, Li Z, Sung S-Y. Laparoscopically assisted anorectal pull-through versus posterior sagittal anorectoplasty for high and intermediate anorectal malformations: a systematic review and meta-analysis. PLoS One. 2017;12:e0170421. doi:10.1371/journal.pone.017042128099464
  • Tian JY. Polymorphism Analysis of PARK16, PARK17, PARK18, BST1 and Polygenic Determinants Analysis of Parkinson‘S Disease. Changsha: Central South University; 2012.
  • Xie D. The Study of Relationship between polymorPhism in BSTI Gene Rs4698412 and Sporadic Parkinson‘S Disease. Hengyang: University of South China; 2011.
  • Ishihara K, Hirano T. BST-1/CD157 regulates the humoral immune responses in vivo. Chem Immunol. 2004;75(4):235–255.
  • Yokoyama S, Mahmuda NA, Munesue T, et al. Association study between the CD157/BST1 gene and autism spectrum disorders in a Japanese population. Brain Sci. 2015;5(2):188–200. doi:10.3390/brainsci502018826010484
  • Sassi C. Genetics of Parkinson disease. Neurorx. 2004;1(2):235–242. doi:10.1602/neurorx.1.2.23515717024
  • Chung SJ, Jung Y, Hong M, et al. Alzheimer‘s disease and Parkinson‘s disease genome-wide association study top hits and risk of Parkinson‘s disease in Korean population. Neurobiol Aging. 2013;34(11):2695.e. doi:10.1016/j.neurobiolaging.2012.06.026
  • Higashida H, Liang M, Yoshihara T, et al. An immunohistochemical, enzymatic, and behavioral study of CD157/BST-1 as a neuroregulator. BMC Neurosci. 2017;18:35. doi:10.1186/s12868-017-0350-728340569
  • Baralle D, Baralle M. Splicing in action: assessing disease causing sequence changes. J Med Genet. 2005;42:737–748. doi:10.1136/jmg.2004.02953816199547
  • Buratti E, Baralle M, Baralle FE. Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res. 2006;34:3494–3510. doi:10.1093/nar/gkl49816855287